Pacific Journal of

Mathematics

CHARACTERIZATION OF SEPARABLE IDEALS




PACIFIC JOURNAL OF MATHEMATICS
Vol. 34, No. 1, 1970

CHARACTERIZATION OF SEPARABLE IDEALS
B. L. ELKINS

A L-algebra A is called separable if the exact sequence
of left A° = Ag,A’-modules; 0 — J— A° A A — 0 splits, where
oa X bY) = a-b; a two-sided ideal % of A is separable in case
the k-algebra A/ is separable,

In this note, we present two characterizations of separable
ideals, In particular, one finds that a monic polynomial
f e k[x] generates a separable ideal if, and only if, f =g, --- g,,
where the g; are monic polynomials which generate pairwise
comaximal indecomposable ideals in k[x], and f'(a) is a unit
in kla] = k[z)/f-klx] (@ = x + f-Kk[z]).

Throughout this paper, we assume that all rings have units and
all ring morphisms preserve units, further, all modules will be assumed
unitary. We will denote the center of the ring A by Z(A4). Each
k-algebra A induces an exact sequence of left 4° = 4 &), A%-modules:

(1) T — A2 A0
where ¢(a ® b°) = a-b.

DerINITION 2 [1]. A will be called a separable k-algebra if the
sequence (1) splits. More generally, a two-sided ideal 2 in the
k-algebra A will be called a separable ideal if the quotient algebra
A/ (k— A— A/) is separable. Denote by Sep, (4) the set of all
such ideals in A; of particular interest is the subset Sep; (4) of all
separable ideals 2 for which A/ is a projective k-module.

ProprosITION 3 [6]. Let A be a k-algebra.

(@) WUeSep, (AANAZW =N eSep, (A) W is any two-sided
ideal of A).

(b) If )i, < Sep,(4) is a family of pairwise comaximal
1deals, then M, ;e Sep, (4).

The following result found in [1] provides a criterion for answer-
ing the question, is Sep, (4) = @ or Sep, (4) = @&.

PROPOSITION 4. Let A be a k-algebra, and let K be a commutative
k-algebra. If ¢(0:J) R, K generates Z(4) R, K as an ideal, then
AR K is a separable K-algebra.

COROLLARY 5. (a) If o < k is an ideal such that
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a-Z(A) + ¢(0: J) = Z(A) ,

then aA € Sep, (4).
(b) If Z(A) =k, and either $(0: J) is not nil or ¢(0: J) £ Rad (k),
then Sep, (A) = @, where Rad (k) is the Jacobson radical of k.

1. Representation of separable ideals.

THEOREM 1.1. Let A be a k-algebra and A cSep, (A). If the
k-module A/ if of finite type, then for each maximal ideals m < k,
there is a family (M,)i-, C Sep, (4) of maximal two-sided ideals such
that

1.2) A+ (m-A) =M, - NM,.

Proof. For each maximal ideal m < k, the k/m-algebra k/m & A/A
is separable and of finite type as a k/m-module, it follows from [2]
Proposition 3.2 that k/m @ A/ = (4/A)/m(A/N) = A/(m-A + A) =
B & .--P B, where each B, is a simple k/m-algebra with Z(B,)
being a separable field extension of k/m; in particular, each B, is a
separable k-algebra. Denoting by M, the kernel of the mapping
A— A/(mA + A) — B;, we find that the family (M;);_, has the desired
properties.

REmark 1.3. If, in (1.1), we assume % eSep; (4), it follows
from (1.1) of [9], that we can drop the assumption that A4/ is a
k-module of finite type.

We obtain immediately from the local criteria for separability
{[2], p. 100) the following theorem.

THEOREM 1.4. Let A be a k-algebra with two-sided ideal A such
that the k-module A/ 1is of finite type. Suppose either that k is
Noetherian or that A/ is a projective k-module.

If, for each maximal ideal m <k, A + m-A has a representa-
tion (1.2) with separable maximal ideals, then U e Sep, (A).

COROLLARY 1.5. Let k be a field.

(@) A is a separable maximal ideal of A if, and only if, A/UA
18 a simple k-algebra whose center is a separable field extension of k.

(b) A eSep, (4) if, and only if, WA is the intersection of a finite
Samily of separable maximal ideals of A.

REMARKS 1.6. (1.5) generalizes a result of [6] where a different
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definition of A e Sep, (4) is given. (1.5) also leads to the following
fact. For a field k, fek[x] generates a separable ideal if, and only
if, f'(a) is a unit in k[a] = k[z]/f-k[z], @ = + fk[x], and f is the
product of distinet polynomials of %[x].

DEFINITION 1.7. [5]. A monic polynomial fekf[x] is separable if
the ideal fk[x] is separable.

ProrosiTiON 1.8. If feklz] is separable, then f'(a) is a unit
wn klal: = klz]/f-k[x].

Proof. Assume, first, that & is local with maximal ideal m.
Denote by f the reduction of f modulo m, then

klz1/(m, ) = k/m @, kla] = kjm[z)/fl/m[z] = k/m|a]

is a separable k/m-algebra, hence f is a separable polynomial. Whence,
by (1.6), f =g, -+~ §, in k/m[z], where each g, is irreducible and f"(@)
is a unit in k/mlal.

Now suppose f’(a) is a nonunit in kfa]; by [7], p. 29, Lemma 4,
each maximal ideal of k[a] has the form (g/(a), m), where g;¢c k[x]
has reduction §; modulo m. Thus, f/(a) € (9:(a), m) for some 7¢[1, s],
and this implies f'(x) € (g,(x), m). But then

J'(@) e ker (k[o] — k[o]/fkle] — k[«]/(m, fk[e]) — k[=]/(g:k[x], m))

so that f’(a) could not be a unit in k/m[@]. This contradiction
establishes our claim that f’(a) is a unit when £ is local.

In general, observe that f'(a) is a unit in k[a] if, and only if
frla,) is a unit in k,[a,] =k, Q: kla] for each maximal ideal m < k,
and then apply the foregoing result.

PRrROPOSITION 1.9. Let feklz] be a monic polynomial satisfying
the conditions.

(i) fa) is a unit in k[a] = klz]/fklz];

(i) f@) = fi-- fs n klx], where the momnic polynomials f;
generate indecomposable ideals which are pairwise comaximal.

Then f is separable.

Proof. Let m < k be a maximal ideal of %, and denote by f the
reduction of f modulo m, then f/(@) is a unit in k/m[a] = k/m Q, kla].
Since f=f, -+ f, in k/m[z], we see that f! =0 in k/m[x] entails
F = flg + fio' e fik/m[x]. But this implies f’@) in a nonunit in
k/m[al: = k/m[z]/fk/m[x], since fik/m[z] < k/m[x]. Thus, each of the
f: separable polynomials in k/m[r] which generate pairwise comaximal
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by (ii). An application of [5] (2.3) shows that f is a separable
polynomial in k[x].

COROLLARY 1.10. Suppose k has no proper idempotents and.
fek[x] is monic. A mecessary and sufficient condition that f be
separable is that conditions (i) and (ii) of (1.9) holds.

Proof. We need only verify that when f is separable, f=f, -+ f,
where each of the ideals f;k[~] is indecomposable and they are pairwise
comaximal. But k[x]/f-k[¢] has only a finite number of idempotents,
since it is a free k-module of rank equal deg (f); hence k[x]/f-k[x] =
B -.- wB,, where each B, is connected and separable as well as
projective as a k-module. Then, by [5] (2.9), B; = k[x]/f:k[~] and we
see that f= f,--- f, as usual.

2. Another representation of separable ideals.

DerFINITION 2.1. Let A be a Fk-algebra. The two-sided ideal
A < A will be called decomposable if U = A, N A,, where A, and A,
are proper two-sided comaximal ideals of A; otherwise U will be
called indecomposable. A will be called decomposable or indecomposable
according to whether or not 0 is.

THEOREM 2.2. Let k be a commutative ring without proper
idempotents. Assume e Sep; (A). Then there is a unique family
(M)i-, of pairwise comaximal indecomposable separable ideals of A
such that

(2.9) A=Mn---NM,.

Proof. Since the projective k-module A/ has finite rank, we
can write A/ ~ Bw - - - 7B,, where the B; are indecomposable separable
k-algebras. Putting M; = ker [A — A/ — B;] we obtain the desired
family.

IfA=NN---NN, where the N; are as the M,, then 4/ =
AMzm .- TtA/M, = A/Nx --- TA/N, implies that

l=e+ - +e=f+ - + fis € S

being orthogonal central idempotents. Since all the factors are in-
decomposable, for each ¢ there is a unique j such that f; = fie;;
hence t < S, and by symmetry, s < ¢, so s =t%. The indecomposability
also implies (after reordering) that e; = f;, so that

M; = ker [A — (A/)e;] = ker [A — (4/A)fi] = N;,
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completing the proof.

REMARK 2.4. (2.2) generalizes a result obtained in [5], see p. 471,
(2.10).
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