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In 1940 R. Salem formulated a sufficient condition for a
continuous and periodic function to have a trigonometric
Fourier series which converges uniformly to the function,
In this paper we will formulate a similar condition, which
implies that the Walsh-Fourier series of such a function has
this property. Furthermore we show that our result is stronger
than certain classical results, and that it also implies the
uniform convergence of the Walsh-Fourier series of certain
classes of continuous functions of generalized bounded varia-
tion, The latter is analogous to results obtained by L. C,
Young and R, Salem for trigonometric Fourier series,

Let {@.(x)} be the sequence of Rademacher funections, i.e.,

evo(x)=+1<0§w<%>, @o(w)=—1(%§x<1),
Po@ + 1) = py(2) .

Pa(®) = p2"), (=1,2,3, ---). In [3] R. E. A. C. Paley gave the
following definition for the Walsh functions {v.(z)}: v(z) = 1, and,
if n=21"42"+4 ... 4+ 2™, with n, >n,> +++ > n,, then +,(x) =
P (X) P, () +++ @, (). J. L. Walsh [6] proved that the system {v,(x)}
is a complete orthonormal system. For every Lebesgue-integrable
function f(x) of period 1 there is a corresponding Walsh-Fourier
geries (WFS):

f@) ~ Siean(e), with o = | @bt .

As in the case of trigonometric Fourier series (TFS), we can find a
simple expression for the partial sums of a WEFS,

S.(f,9) = Sevn@ = [ f@ + 0D,

where D,(t) = 3z (f). For the meaning of 4 and for further
notations, definitions and properties of the WFS we refer to [2].

2. In [4], Chapter VI, R. Salem proved the following theorem:
Let f(x) be a continuous function of period 27. For odd =, let

T.w) = S (0 + D1 + 20m/m) — flo + @ + Dafm)]
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and let Q,(x) be obtained from T,(x) by changing 7 into —x. Then,
it lim,_. T,(x) = lim, .. @.,(®) = 0 uniformly in =z, the TFS of f(x)
converges uniformly to f(x). R. Salem also showed that this theorem
implies both the Dini-Lipschitz test for continuous functions with
modulus of continuity o(f, 6) = o(log 6)~* as 60— 0, and Jordan’s
theorem on continuous functions of bounded variation. Finally, he
extended this last theorem to certain classes of continuous functions
of generalized bounded wvariation. For a proof of Salem’s results,
see also [1}, Chapter IV, §5.

3. Our main result about WFS can be stated as follows:

THEOREM. Let f(x) be a continuous function of period 1. Let
Un(m) = pZ:—{ Pt ]f(:v + 2p/2n+1) — fl@ 4+ 2p + 1)/2n+1) l .

Then, lim, .. U,(2) = 0 uniformly in ¢ implies that lim, .. S,(f, x) =
J(@) uniformly in .

Proof. For each natural number k& we have
Su(f, 3) — f@) = [ Dl + 9 — f@lat

Let k= 2" + k', with 0 < k&’ < 2", then, according to [2], p. 386, we
have D, (t) = Dyu(t) + ¥un(t)« Dy (), where

2" on [0, 27™)
Dz”(t) = ’ Dk'(t) =k on [0’ 2_n) ’
0 on [27" 1)

and

+1 on [2p/2**, (2p + 1)/2**)
’l,b"zn(t): fOI‘p:O, 1, .o.,2""—1_

—1 on [(2p + 1)/2"*, (2p + 2)/2"*Y)

Therefore,
1Su(f,8) — f@ = | | Da® 17 + 9 — saat]

+ 'Ogl’llfzn(t)Dk:(t)[ f@ 4 ) — f@)] dtl —A4B.

For the first term of this sum we have
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sz | ifet ) - @ldr S o2 .
For the second term we have

B =

S Dol + 0 — sl

p=0 2p/2n+1
§<2p+z)/2n+1

(2p+1>/2n+1D"'(t) Lf@+ 0 - f(x)]dt>l

2n—1 S<2p+1>l2"+1

D fl@ + 1) — f@)]

p=0 2p/2n+1

— Dult + 2@ + (& + 277 — S| -

Now we observe that, since k' < 2", D,(t) is a sum of functions
Wwi(t) with ¢ < 2" FKach of these functions is constant on the
intervals [k/2", (& + 1)/2"), (k=0,1,---,2* —1). Therefore, if
te[2p/2™t, 2p + 1)/2"), then D, () = D,.(t + 27" = D,.(2p/2"*).
Thus we have

B =

271 g(2p+1)/2”+1

D, (p/2")f(x + 1) — fle + (¢ + 277)]de

p=0 Jop/an+tl

2%—1 f2— 71

= 2] Do + @+ 22

p=

—fa+ @+ @+ 1)/2"+1))]dtl

= |2 [ Dzl + ¢ + 2oz
— f@+ (t+ 2p + 1)/2”+1)]dtl
< | 2—”—10§‘Dk,<0>[f<x 20 — flo 4+ (E+ 1)/2”+1)1dt]

2n—1 1
+ 22—%—18 ---dt‘
p=1 0

< 2L w(f, 27 + l Si(z_n_lznz‘—‘l .. .)dti =B, + B;.
0 p=1

Using the fact that for we (0, 1), |D,(u)| < 2u~*, [2], Lemma 1, we
obtain the following inequality for the integrand, I, of B,:
27—
[T = Sy27= 2 p™ | flo 4 (¢ + 20)/2°)
—fle 4+ ¢+ 2p + 1)/2vY) | .

Now we observe that for every ¢ € |0, 1) there is an %< |0, 1), & = Z(¢),
such that @ + (¢ + q)/2"" = & + ¢/2°" for all ¢=1,2, ..., 2" — 1.
Therefore
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| ] éiglp”l | f@ + 2p/2*+") — f@ + @2p + D/2"7) | = U.(@) .

Under the hypothesis of our theorem U,(&)— 0 uniformly in & as
n— oo, This implies that B, >0 uniformly in 2 as n — o, and so,

lim,_.. (Si(f; ) — f(®)) = 0 uniformly in 2.

4. In this section we will show that our main theorem implies
two classical results for WFS. The first is the Dini-Lipschitz test
for WFS, which was first proved in [2], Th. XIII. A generalization
of it can be found in [5], § (3.5).

COROLLARY 1. Let f(x) be a continuous function of period 1
and let o(f, ) = o(log 6= as 6—0. Then the WFS of f(x) con-
verges uniformly to f(x).

Proof. We see immediately that
an—1
| Un() | = g,lp‘lw(f, 277 < o(f, 277)C log 2
for some constant C. Thus lim,... U,(x) = 0 uniformly in x.

The next corollary is Jordan’s test for WFS, which was first
proved in [6], Th. IV,

COROLLARY 2. Let f(x) be a continuous function of period 1.
If f(x) is of bounded variation on [0, 1], then its WEFS converges

uniformly to f(x).

Proof. We can find a nondecreasing sequence of natural numbers
{m(n)} such that (a) m(n) <2"—1 for all n, (b) m(n)— ~ as n— oo,
() o(f, 2" ) log m(n)—0 as n— o. Then,

U@)| = o(f, z~n—1)[1 + % e m%n)]

+ S g A 4 2p2) — S+ @p + /2 |

p=m(n)+1

< Co(f, 27 ") log m(n) + (m(n) + 1)~* Var (f) .
Thus lim,.. U,(x) = 0 uniformly in z.

Finally we will prove a theorem for WFS analogous to certain
results of L. C. Young [7] and R. Salem [4] for TFS, and which is
an extension of Jordan’s theorem. First we will give a definition of
bounded @-variation.
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Let o(u) be a continuous, strictly increasing function defined for
% = 0, such that ¢(0) =0 and lim, . p(u) = . Let « be the inverse

of @. Next, let O(u) = S @(t)dt and Tlu) = Sua,k(t)dt. Functions so

obtained, are called complementary in the sense of W. H. Young, and
they satisfy the following inequality, due to W. H. Young: if a, b=0,
then ab < @(a) + ¥ (b), see [8], ». 16.

DeFINITION. A function f(x) on [0, 1) is said to be of bounded
@-variation if there is an M < « such that for each finite partition
0wz <2+-- <®,=1 we have 37 O(] f(&:+,) — flz)) |) < M.

We can prove the following

COROLLARY 8. Let O(x) and ¥(x) be functions complementary
in the sense of W. H. Young and let S, U(k™) < . Let f(x) be
a continuous function of period 1 and of bounded @-variation. Then

lim,_.. S.(f, ) = f(x) uniformly in x.

Proof. Since Do, (k™) < «, we can find a sequence {¢(k)} of
positive numbers, decreasing to 0 as k — o, and for which

S U (ke(l)7) < e
Let
Lf@ + 2p/2"") — fle + @p + 1)/2") | = 4, .
Then, according to Young’s inequality, we have
4p-(pe (p))™ = O(4,) + ¥((pe(0))7™) .

From our hypothesis it follows that there is a constant N < < such
that for each m

T 40e ) 304 + 3 F(@s(w) ) < N .
Therefore,
iZ: 4,p* < Ne(m) .
Choosing {m(n)} as in the proof of Corollary 2, we have

| U@)| < o(f, 2~"-1)[1 ¥ % G -ﬂ%n)] + Ne(m(n) + 1) ,

i.e., U,(x) — 0 uniformly in x as n — .
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Waterman for bringing this problem to his attention and for his
encouragement during its solution.
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