Pacific Journal of Mathematics ### ON THE CONFORMAL MAPPING OF VARIABLE REGIONS FRANK J. POLANSKY Vol. 34, No. 1 May 1970 # ON THE CONFORMAL MAPPING OF VARIABLE REGIONS ### Frank J. Polansky We establish an estimate for the functional $$I(f,\,g;\,\rho) = \int_{\mathcal{C}_\rho} |\,f(t) - g(t)\,|\cdot|\,dt\,|\,\,,$$ C_{ρ} is the circumference $|t|=\rho, 0 \leq \rho < 1$. Here f and g are normalized conformal mapping functions of |z|<1 onto a pair of bounded, open, simply connected, origin containing domains in the w plane whose boundaries are near each other in some sense. In the second part of the paper we establish an estimate for the functional $I(f',g';\rho)$ in case the boundaries are additionally assumed to be rectifiable. We are motivated by the fact that if one of the domains is a disc we get the case of "nearly circular" domains which has been much studied. Aside from an absolute constant our estimates are geometric in nature, being expressed in terms of numbers which are derived from properties of the boundaries of the mapped domains. They are of interest to us because they hold uniformly for all ρ , $0 \le \rho < 1$ and because they approach zero when one of the domains converges to the other as described in the paper. 1. DEFINITION 1. Let D_f and D_g denote a pair of open, bounded, simply connected sets in the w plane both of which contain the origin. Let Γ_f and Γ_g denote their respective boundaries. Let Δ denote the component of $D_f \cap D_g$ which contains the origin and let Γ denote the boundary of Δ . Let λ_f be the radius of the largest disk lying in the complement of Γ_f and having its center on Γ (if no such disk exists, write $\lambda_f = 0$). Let λ_g be analogously defined. The inner distance is defined by the formula $$\varepsilon = \varepsilon(\Gamma_f, \Gamma_g) = \operatorname{Max}(\lambda_f, \lambda_g)$$. The statement ' $\phi(z)$ is a normalized mapping function' means that $\phi(z)$ is the conformal mapping function of one bounded, simply connected, origin containing domain onto another and that $\phi(0) = 0$, and $\phi'(0)$ is positive. The symbol C_{ρ} will always be used to denote the locus $\mid t \mid = \rho$, $0 \leq \rho < 1$. Let R_1 and R_2 denote the radii of two circles with centers at w=0 which are such that the boundaries Γ_f and Γ_g lie in the ring $$0 < R_1 \le |w| \le R_2$$. THEOREM 1. If f(z) and g(z) are the normalized mapping functions of |z| < 1 onto D_f and D_g respectively, if $0 < \varepsilon(\Gamma_f, \Gamma_g) < R_1$, then $$I(f,\,g;\, ho) = \int_{{}^{\mathcal{C}}_{ ho}} |\,f(t)\,-\,g(t)\,|\,\cdot\,|\,dt\,| \leqq K_{\scriptscriptstyle 1}R_{\scriptscriptstyle 2}\!\!\left(rac{arepsilon}{R_{\scriptscriptstyle 1}} ight)^{\!1/6}.$$ The number K_1 is an absolute constant, and the inequality holds uniformly for all ρ , $0 \le \rho < 1$. Before proving Theorem 1 we state some results which are used in the proof. LEMMA A. ([4], p. 349.) Let D be a bounded, simply connected domain which contains the origin and let $z = \psi(w)$ be the normalized mapping function of D onto the disk |z| < 1 in the z plane. If w is a point of D at a distance δ from the boundary of D, then $$1 - |\psi(w)| \leq 4\sqrt{\delta \psi'(0)}$$. LEMMA B. ([3], p. 563.) Let $w = \phi(z)$ be the normalized mapping function of |z| < 1 onto the domain whose boundary D lies in the ring $1 - \sigma \le |w| \le 1$, $0 < \sigma < 1$. Then $$\int_{C_{\alpha}} |\phi(t) - t|^2 \cdot |dt| \leq K_2 \sigma^2.$$ The number K_2 is an absolute constant, and inequality holds uniformly for all ρ , $0 \le \rho < 1$. LEMMA C. ([1], p. 165.) If F(z) and $\Theta(z)$ are regular in |z| < 1 if $\Theta(0) = 0$ and $|\Theta(z)| < 1$ in |z| < 1, then $$\int_{\mathcal{C}_{\boldsymbol{\rho}}} |F(\boldsymbol{\Theta}(t))|^2 \cdot |dt| \leqq \int_{\mathcal{C}_{\boldsymbol{\rho}}} |F(t)|^2 \cdot |dt|,$$ uniformly valid for all ρ , $0 \leq \rho < 1$. 2. Proof of Theorem 1. (a) From Definition 1, each point of Γ will have distance at most ε from Γ_f . The inverse of f(z) maps Δ onto a domain E which lies in |z| < 1. Let E_1 denote the boundary of E. From Lemma A, the set E_1 will lie in the ring $$1-4\sqrt{ rac{arepsilon}{f'(0)}} \leq |z| \leq 1$$. Since $$f'(0) \ge \inf_{|z| \le 1} \left| \frac{f(z)}{z} \right| \ge R_1$$, the set E_1 will lie in the ring $$1-4\sqrt{ rac{arepsilon}{R_1}} \leq |z| \leq 1$$. The above inequality fails to define a ring if $\varepsilon/R_1 \ge 1/16$. We treat the two cases separately. Let $\omega(z)$ be the normalized mapping function of |z| < 1 onto E. If $\varepsilon/R_1 < 1/16$, we have from Lemma B, $$J(ho) = \int_{c_ ho} |\omega(t) - t|^2 |dt| \le 16 K_2 rac{arepsilon}{R_1}$$. For the case $1/16 \le \varepsilon/R_1 < 1$, we have trivially, $$J(ho) \leqq 4 \cdot 2\pi ho \leqq 128\pi \cdot rac{arepsilon}{R_{\scriptscriptstyle 1}}$$. Thus, if $K_3 = \text{Max} [128\pi, 16K_2]$, then (1) $$J(ho) \leqq K_{\scriptscriptstyle 3} rac{arepsilon}{R_{\scriptscriptstyle 1}}, \, 0 < arepsilon < R_{\scriptscriptstyle 1}$$. (b) For $$0 \le r \le 1, |z| < 1$$ let $$B_r(z) = f(z) - f(rz) .$$ Then $$f(z) - f(\omega(z)) = B_r(z) - B_r(\omega(z)) + f(rz) - f(r\omega(z))$$. Hence $$\int_{C_{\rho}} |f(t) - f(\omega(t))| \cdot |dt|$$ $$\leq \int_{C_{\rho}} |B_{r}(t)| \cdot |dt| + \int_{C_{\rho}} |B_{r}(\omega(t))| \cdot |dt|$$ $$+ \int_{C_{\rho}} |f(rt) - f(r\omega(t))| \cdot |dt| \equiv I_{1} + I_{2} + I_{3}.$$ If $f(z) = \sum_{i=1}^{\infty} a_{i} z^{i}$ then $$egin{aligned} I_{\scriptscriptstyle 1}^2 & \leq 2\pi ho ullet \int_{{\mathcal C}_{ ho}} |B_r(t)|^2 ullet |dt| = 2\pi ho {\mathcal E} \, |\, a_k\,|^2 ullet ho^{2k} ullet (1-r^k)^2 ullet 2\pi ho \ & \leq 4\pi^2 {\mathcal E} \, |\, a_k\,|^2 (1-r^k) \ & = 4\pi^2 {\mathcal E} \, |\, a_k\,|^2 (1-r) (1+r+r^2+\cdots+r^{k-1}) \end{aligned}$$ $$\leq 4\pi^2(1-r)\Sigma(|\alpha_k|^2 \cdot k) = 4\pi(1-r) \cdot (\text{area of } D_f)$$ $\leq 4\pi(1-r) \cdot \pi R_2^2$. Thus, if $K_4^2 = 4\pi^2$, $$(3) I_1 \leq K_4 R_2 \sqrt{1-r}, 0 \leq r \leq 1.$$ From Lemma C, the same bound is valid for I_2 : $$(4) I_2 \leq K_4 R_2 \sqrt{1-r}, 0 \leq r \leq 1.$$ (c) If $0 < r < \alpha < 1$, we have for the integrand of I_3 : $$\begin{split} |f(rt) - f(r\omega(t))| & \leq \frac{1}{2\pi} \int_{\sigma_{\alpha}} |f(\gamma)| \cdot \left| \frac{1}{\gamma - rt} - \frac{1}{\gamma - r\omega} \right| \cdot |d\gamma| \\ & \leq \frac{1}{2\pi} \int_{\sigma_{\alpha}} |f(\gamma)| \cdot \left| \frac{r\omega - rt}{(\gamma - rt)(\gamma - r\omega)} \right| \cdot |d\gamma| \\ & \leq \frac{\sup|f| \cdot r |\omega - t|}{2\pi} \int_{\sigma_{\alpha}} \frac{|d\gamma|}{|\gamma - rt| \cdot |\gamma - r\omega|} \\ & \leq \frac{R_2 |\omega - t|}{2\pi} \left[\int_{\sigma_{\alpha}} \frac{|d\gamma|}{|\gamma - rt|^2} \right]^{1/2} \cdot \left[\int_{\sigma_{\alpha}} \frac{|d\gamma|}{|\gamma - r\omega|^2} \right]^{1/2} \\ & \leq \frac{R_2 |\omega - t|}{2\pi} \left[\frac{2\pi\alpha}{\alpha^2 - |rt|^2} \right]^{1/2} \cdot \left[\frac{2\pi\alpha}{\alpha^2 - |r\omega|^2} \right]^{1/2} . \end{split}$$ Let $\alpha \rightarrow 1$ and we obtain $$|f(rt) - f(r\omega(t))| \le \frac{|R_2|\omega(t) - t|}{1 - r}, 0 < r < 1.$$ Hence, from (1) $$\int_{C_{\rho}} |f(rt) - f(r\omega(t))| \cdot |dt| \leq \frac{R_{2}}{1 - r} \int_{C_{\rho}} |\omega(t) - t| |dt| \leq \frac{R_{2}}{1 - r} \left[\int_{C_{\rho}} |\omega - t|^{2} |dt| \right]^{1/2} \cdot \sqrt{2\pi\rho} \leq \frac{R_{2}}{1 - r} \left[2\pi K_{3} \left(\frac{r_{\varepsilon}}{R_{1}} \right) \right]^{1/2} .$$ If we combine (2), (3), (4) and (5), we obtain the estimate $$egin{align} egin{align} \int_{C_{m{ ho}}} |f(t)-f(\pmb{\omega}(t))|\cdot|\,dt\,| \ & \leq 2K_4R_2\sqrt{1-r} + rac{R_2}{1-r} \Big[2\pi K_3\!\Big(\! rac{arepsilon}{R_1}\!\Big)\!\Big]^{1/2},\, 0 < r < 1 \;. \end{align}$$ (d) The whole argument can be repeated with g(z) in place of f(z). In this case we shall have an estimate analogous to (6): $$\begin{array}{l} \left(\ 6' \right) & \int_{C_{\rho}} | \ g(t) - \ g(\omega_{_1}(t)) \ | \cdot | \ dt \ | \\ & \leq 2 K_{_4} R_{_2} \sqrt{1-r} + \frac{R_{_2}}{1-r} \Big[2 \pi K_{_3} \! \Big(\frac{\varepsilon}{R_{_1}} \Big) \Big]^{_{1/2}} \!, \ 0 < r < 1 \ . \end{array}$$ The function $\omega_1(z)$ is the normalized mapping function of |z| < 1 onto the image of Δ under the inverse of g(z). Since $f(\omega(z))$ and $g(\omega_1(z))$ are both normalized mapping functions from |z| < 1 onto Δ it follows from the uniqueness that $$f(\omega(z)) \equiv g(\omega_1(z)), |z| < 1.$$ If we combine (6), (6'), (7) and choose r so that $1 - r = (\varepsilon/R_1)^{1/3}$, the conclusion of the theorem is established. Throughout the remainder of the paper we shall assume the situation of Theorem 1 with the added hypothesis that Γ_f and Γ_g are rectifiable Jordan curves of lengths L_f and L_g . In this case it is well-known that \bar{D}_f is the continuous image of $|z| \leq 1$ and that if f'(z) is defined at the boundary by $$f'(e^{i\theta}) = \lim_{z \to e^{i\theta}} \frac{f(z) - f(e^{i\theta})}{z - e^{i\theta}}, |z| \le 1,$$ then $f'(e^{i\theta})$ exists almost everywhere, is Lebesgue summable, and $$L_f = \int_0^{2\pi} |f'(e^{i heta})| \ d heta$$. 3. The following definition ([4], p. 337) and lemma ([4], p. 337) are useful. DEFINITION α . Let c denote a crosscut of D_f which does not pass through w=0. Let T denote that subregion of D_f determined by c which does not contain w=0. Let λ denote the diameter of c and let d denote the diameter of c. For any $\delta>0$ consider all possible crosscuts c for which $\lambda\leq\delta$. The crosscut modulus is defined is defined to be $$\eta_f(\delta) = \sup_{\lambda \leq \delta} \Lambda$$. The crosscut modulus is monotonic and has the property: $$\eta_f(\delta) \longrightarrow 0 \quad \text{as} \quad \delta \longrightarrow 0$$ LEMMA D. Let A_f denote the area of D_f . Let z_0 be any point on |z| = 1 and k_s the part of the circle $|z - z_0| = s$ which lies in |z| < 1. Then for every s, 0 < s < 1, there exists a σ , $s \le \sigma \le s^{1/2}$ such that the image of k_{σ} is a crosscut of length $$l_{\sigma} \leqq \left(rac{2\pi A_f}{\log rac{1}{s}} ight)^{1/2} \,.$$ We introduce the abbreviation: (8) $$u_f(\delta) = \eta_f\!\!\left(\!\!\left(rac{2\pi A_f}{\log rac{1}{\delta}} ight)^{\!1/2}\!\!\right)\!\!,\, 0<\delta<1\;.$$ An immediate consequence of Lemma D is LEMMA 1. $$h_f(r) = \sup_{|z|=1} |f(z) - f(rz)| \le \nu_f(1-r), \, 0 < r < 1$$. 4. DEFINITION 2. For $m \geq 2$, let $\{w_1, w_2, w_3, \dots, w_m\}$ be any set of m distinct points taken in cyclic order on Γ_f and so distributed that Γ_f is partitioned into m subarcs of equal length, each subarc having length $L_{f/m}$. Let l_{λ} be the length of the perimeter of the cyclically determined polygon, and let λ , the norm of the partition, be defined by $$\lambda = \text{Max}[|w_1 - w_m|, |w_2 - w_1|, |w_3 - w_2|, \dots, |w_m - w_{m-1}|].$$ The number l_{λ} can be written as $$l_{\lambda} = |w_{1} - w_{m}| + \sum_{k=1}^{m-1} |w_{k+1} - w_{k}|$$. For any $\delta > 0$ consider all partitions for which $\lambda \leq \delta$. Let $$U_f(\delta) = \inf_{\lambda \leq \delta} l_{\lambda}$$. It is easily shown that $\operatorname{Sup} U_f(\delta) = L_f$. We define the modulus of rectifiability to be $$\zeta_f(\delta) = L_f - U_f(\delta)$$. The modulus $\zeta_f(\delta)$ is monotonic and has the property: $\zeta_f(\delta) \to 0$ as $\delta \to 0$. LEMMA 2. If $L_f(r)$ is the length of the level curve in D_f which is the image of |z| = r, then $$L_f - L_f(r) \le \zeta_f(\sqrt{\nu(1-r)}) + 2L_f\sqrt{\nu_f(1-r)} + 4\nu_f(1-r), 0 < r < 1$$. *Proof.* Let the positive integer m be defined by $$m = \left[\frac{L_f}{\sqrt{\nu_f(1-r)}}\right] + 2.$$ Let w_1, w_2, \dots, w_m be a set of points in cyclic order Γ_f , so arranged that Γ_f is partitioned into m equal subarcs, each subarc having length L_f/m . Clearly the norm of the partition does not exceed L_f/m and if l_m is the length of the perimeter of the polygon, then (10) $$L_f - l_m \leq \zeta_f \left(\frac{L_f}{m}\right).$$ We define the points z_k , \tilde{w}_k by $w_k = f(z_k)$, $\tilde{w}_k = f(rz_k)$. The set \tilde{w}_k determines a polygon inscribed in the level curve in D_f which is the image of |z| = r. Comparing corresponding sides of the polygons, we have from Lemma 1, $$egin{aligned} | \ w_{k+1} - w_k \ | & \leq | \ w_{k+1} - \widetilde{w}_{k+1} \ | \ + | \ \widetilde{w}_{k+1} - \widetilde{w}_k \ | \ + | \ \widetilde{w}_k - w_k \ | \ & \leq h_f(r) + | \ \widetilde{w}_{k+1} - \widetilde{w}_k \ | \ + h_f(r) \ & \leq 2 u_f(1-r) + | \ \widetilde{w}_{k+1} - \widetilde{w}_k \ | \ . \end{aligned}$$ Similarly, $$|\tilde{w}_{k+1} - \tilde{w}_k| \leq 2\nu_f (1-r) + |w_{k+1} - w_k|$$. Thus, if l'_m is the length of the perimeter of the level curve polygon, $$|l'_m - l_m| \le 2m\nu_f(1-r).$$ Noting that $l'_m \leq L_f(r)$, we have from (10) and (11) (12) $$L_f - L_f(r) \leq L_f - l'_m \leq L_f - l_m + |l_m - l'_m|.$$ $$\leq \zeta_f \left(\frac{L_f}{m}\right) + 2m\nu_f (1-r).$$ From (9) $$\frac{L_f}{\sqrt{\nu_f(1-r)}} \leq m \leq \frac{L_f}{\sqrt{\nu_f(1-r)}} + 2.$$ The conclusion follows from (10), (11) and (12). In the estimate of Lemma 2, it would appear that the first term should dominate the others and this will be so if ζ_f is sufficiently weak. However, it is possible (e.g., if D_f is a disk) for the term $2L_f\sqrt{\nu_f}$ to be dominant. For purpose of final estimate we introduce the boundary functional (13) $$\beta_f(\delta) = \zeta_f(\sqrt{\nu_f(\delta)}) + 2L_f\sqrt{\nu_f(\delta)} + 4\nu_f(\delta), \, 0 < \delta < 1.$$ LEMMA 3. $$egin{aligned} \int_{c_ ho} |f'(t)-f'(rt)| \cdot |\, dt\,| & \leq 2 \sqrt{L_f eta_f (1-r)} \;, \ 0 < r < 1 \;, \;\; ext{for all} \;\; ho, \, 0 \leq ho < 1 \;. \end{aligned}$$ *Proof.* The function $\sqrt{f'(z)}$ (i.e., the branch which is positive at the origin) is regular in |z| < 1. If $\sqrt{f'(z)} = \sum_{0}^{\infty} c_k z^k$, it is well known that $\Sigma |c_k|^2$ is convergent and $$egin{aligned} L_f &= \int_0^{2\pi} \!\! \sqrt{f'(e^{i heta})} \overline{\sqrt{f'(e^{i heta})}} d heta = 2\pi \Sigma \, |\, c_k \, |^2 \;, \ L_f(r) &= \int_0^{2\pi} \!\! \sqrt{f'(re^{i heta})} \overline{\sqrt{f'(re^{i heta})}} r d heta = 2\pi r \! \cdot \! \Sigma \, |\, c_k \, |^2 r^{2k}, \, 0 < r < 1 \;. \end{aligned}$$ We write $$egin{aligned} \left[\int_{C_{oldsymbol{ ho}}} |f'(t)-f'(rt)|\cdot|\,dt \,| \, ight]^2 \ & \leq \int_{C_{oldsymbol{ ho}}} |\sqrt{f'(t)}-\sqrt{f'(rt)}\,|^2\cdot|\,dt \,|\cdot\int_{C_{oldsymbol{ ho}}} |\sqrt{f'(t)}+\sqrt{f'(rt)}\,|^2\cdot|\,dt \,| \ & = I_1\cdot I_2 \;, \ I_1 &= 2\pi ho\cdot\Sigma\,|\,c_k\,|^2 ho^{2k}(1-2r^k+r^{2k}) \leq 2\pi\Sigma\,|\,c_k\,|^2(1-r^{2k}) \ & = L_f-L_f(r)\cdot rac{1}{r} \leq L_f-L_f(r) \;, \ I_2 &= 2\pi ho\,\Sigma\,|\,c_k\,|^2\, ho^{2k}(1+2r^k+r^{2k}) \leq 2\pi\Sigma(|\,c_k\,|^2\cdot 4) = 4L_f \;. \end{aligned}$$ From these inequalities and Lemma 2, the conclusion is apparent. ### 5. Final estimates. We assert: THEOREM 2. If Γ_f and Γ_g are rectifiable Jordan curves of lengths L_f and L_g , if $0 < \varepsilon/R_1 < 1$, then $$I(f', g'; \rho) \leq 2[\sqrt{L_f} + \sqrt{L_g} + M/R_1^{1/2}]\sqrt{\beta_f(\sigma)} + 2\sqrt{L_g\mu}, \ uniformly \ for \ all \ \ ho, 0 \leq ho < 1,$$ where $\sigma = (\varepsilon/R_1)^{1/24}$, $\mu = |L_f - L_g|$, $M = \text{Max}[K_1R_2, 2\sqrt{L_gK_1R_2}]$. *Proof.* Write $$egin{aligned} I(f',\,g'; ho) & \leq \int_{C_{ ho}} |f'(t) - f'(rt)| \cdot |\,dt\,| + \int_{C_{ ho}} |f'(rt) - g'(rt)| \cdot |\,dt\,| \\ & + \int_{C_{ ho}} |\,g'(rt) - g'(t)\,| \cdot |\,dt\,| = I_1 + I_2 + I_3 \,. \end{aligned}$$ Choose $1 - r = \sigma$, from Lemma 3, $$I_1 \leq 2\sqrt{L_f \beta_f(\sigma)}$$. Let $0 < \rho < \alpha < 1$, then, from Theorem 1 $$egin{aligned} I_2 & \leq \int_{c_ ho} iggl[rac{1}{2\pi} \int_{c_lpha} iggl| rac{f(\gamma) - g(\gamma)}{(\gamma - rt)^2} iggr| ullet | d\gamma \, | iggr] ullet | dt \, | \leq rac{K_1 R_2 (arepsilon/R_1)^{1/6}}{(1 - r)^2} \ & = K_1 R_2 \sigma^2 \leq K_1 R_2 \sigma \; . \end{aligned}$$ From the proof of Lemma 3 (with g in place of f) $$I_{\scriptscriptstyle 3} \leqq 2 \sqrt{L_{\scriptscriptstyle g}} (L_{\scriptscriptstyle g} - L_{\scriptscriptstyle g}(r))^{\scriptscriptstyle 1/2}$$, and $$egin{aligned} L_{g} - L_{g}(r) & \leq |L_{g} - L_{f}| + L_{f} - L_{f}(r) + |L_{f}(r) - L_{g}(r)| \ & = \mu + A + B \; . \end{aligned}$$ From Lemma 2, $A \leq \beta_f(\sigma)$, and $$B = \left| \int_{C_{\rho}} [|f'(rt)| - |g'(rt)|] |dt| \le \int_{C_{\rho}} |f'(rt) - g'(rt)| \cdot |dt| \right|$$ $$= I_2 \le K_1 R_2 \sigma^2.$$ Thus, $$I_3 \leq 2 \sqrt{L_g} (\mu + A + B)^{1/2} \leq 2 \sqrt{L_g} (\mu^{1/2} + A^{1/2} + B^{1/2})$$. Combining estimates we have (14) $$I(f', g'; \rho) \leq 2(\sqrt{L_f} + \sqrt{L_g})\sqrt{\beta_f(\sigma)} + 2\sqrt{L_g\mu} + (2\sqrt{L_gK_1R_2} + K_1R_2)\sigma.$$ From (8) and (13) and the definition of η_f , $$egin{aligned} \sqrt{eta_f(\sigma)} & \geq 2(u_f(\sigma))^{1/2} \geq \eta_f \!\!\left(\!\!\left(rac{2\pi A_f}{\log rac{1}{\sigma}}\! ight)^{\!1/2}\! ight)^{\!1/2} \geq \!\!\left(\!\! rac{2\pi A_f}{\log rac{1}{\sigma}}\! ight)^{\!1/4} \ & \geq ((2\pi^2R_1^2)^{1/4}\!\cdot\!\sigma) \geq R_1^{1/2}\sigma \;. \end{aligned}$$ Hence $$(2\sqrt{L_g K_1 R_2} + K_1 R_2) \sigma \leq \frac{2M\sqrt{\beta_f(\sigma)}}{R_1^{1/2}}$$ the conclusion follows from (14) and (15). LEMMA 4. If $$\mu=|L_f-L_g|$$ and if $$I^*=\sup_{\rho}I(f',g';\rho), 0\leq \rho<1\;, \quad then\quad \mu\leq I^*\;.$$ Proof. We have $$egin{aligned} |L_f(ho)-L_g(ho)| &= \left|\int_{c_{ ho}} |f'(t)|\cdot|\,dt\,| - \int_{c_{ ho}} |g'(t)|\cdot|\,dt\,| ight| \ &\leq \left|\int_{c_{ ho}} |f'(t)-g'(t)|\cdot|\,dt\,| = I(f',g'; ho) \leq I^* \;. \end{aligned}$$ Let $\rho \to 1$ on the left and the lemma is proved. LEMMA 5. $$|f(e^{i heta})-g(e^{i heta})| \leqq I^*$$. Proof. The Fejer-Riesz inequality asserts that $$A = \int_{-1}^{1} |H(x)|^p dx \le \frac{1}{2} \int_{0}^{2\pi} |H(e^{i\alpha})|^p d\alpha = B$$, p>0 and x is real. Here H(z) which is regular in |z| < 1 belongs to the Hardy class H^p in $|z| \le 1$. Let p = 1 and we make the choice $H(z) = \rho e^{i\theta} (f'(z\rho e^{i\theta}) - g'(z\rho e^{i\theta}))$. Noting that $A \ge \left| \int_0^1 H(x) dx \right|$, that $2B = I(f', g'; \rho) \le I^*$, we let $\rho \to 1$ and we get the conclusion of the lemma. We are now able to state our convergence theorem as THEOREM 3. If the f boundary is held fixed and the g boundary is allowed to vary, a necessary and sufficient condition that $I(f', g'; \rho) \rightarrow 0$ uniformly for all ρ , $0 \le \rho < 1$, is that $\mu + \sigma \rightarrow 0$. *Proof.* We get the sufficiency from Theorem 2. From Lemma 4 we see that $I^* \to 0$ implies that $\mu \to 0$ which is one part of the necessity. From Lemma 5, we see that if I^* is arbitrarily small the boundary point $f(e^{i\theta})$ will be arbitrarily close to the g boundary and vice versa. So we have $I^* \to 0$ implies $\varepsilon \to 0$ implies that $\inf R_1 > 0$ so that $I^* \to 0$ implies that $\sigma \to 0$. This completes the proof of Theorem 3. Without estimate, S. E. Warschawski [2] established a result that is similar to Theorem 3. ### **BIBLIOGRAPHY** - 1. J. E. Littlewood, Lectures on the theory of functions, Oxford University Press, London, England, 1944. - 2. S. E. Warschawski, Über einige Konvergensätze aus der Theorie der konformen Abbildung, Nachrichten von der Gesellschaft der Wissenschaften, Göttingen, 1930. - 3. —, On conformal mapping of nearly circular regions, Proc. Amer. Math. Soc. 1 (1950), 562-574. 4. ———, On the degree of variation in conformal mapping of variable regions, Trans. Amer. Math. Soc. **69** (1950), 335-356. Received February 12, 1968. This paper gives the main results of a thesis which originated in 1950 at the University of Minnesota under the direction of Professor S. E. Warschawski, to whom the author is grateful for valuable assistance. ### PACIFIC JOURNAL OF MATHEMATICS ### **EDITORS** H. SAMELSON Stanford University Stanford, California 94305 RICHARD PIERCE University of Washington Seattle, Washington 98105 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007 RICHARD ARENS University of California Los Angeles, California 90024 ### ASSOCIATE EDITORS E. F. BECKENBACH B. H. NEUMANN F. Wolf K. Yoshida ### SUPPORTING INSTITUTIONS UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION TRW SYSTEMS NAVAL WEAPONS CENTER Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan ## **Pacific Journal of Mathematics** Vol. 34, No. 1 May, 1970 | Jonan Aarnes, Edward George Effros and Ole A. Meisen, <i>Locally compact</i> | | | | | |---------------------------------------------------------------------------------|----------|--|--|--| | spaces and two classes of C*-algebras | 1 | | | | | Allan C. Cochran, R. Keown and C. R. Williams, <i>On a class of topological</i> | | | | | | algebras | 17 | | | | | John Dauns, Integral domains that are not embeddable in division rings | 27 | | | | | Robert Jay Daverman, On the number of nonpiercing points in certain | | | | | | crumpled cubes | 33 | | | | | Bryce L. Elkins, Characterization of separable ideals | 45 | | | | | Zbigniew Fiedorowicz, A comparison of two naturally arising uniformities | | | | | | on a class of pseudo-PM spaces | 51 | | | | | Henry Charles Finlayson, Approximation of Wiener integrals of functionals | 61 | | | | | continuous in the uniform topology | | | | | | Theodore William Gamelin, Localization of the corona problem | 73 | | | | | Alfred Gray and Paul Stephen Green, Sphere transitive structures and the | | | | | | triality automorphism | 83
97 | | | | | Charles Lemuel Hagopian, On generalized forms of aposyndesis | | | | | | J. Jakubík, On subgroups of a pseudo lattice ordered group | 109 | | | | | Cornelius W. Onneweer, On uniform convergence for Walsh-Fourier | | | | | | series | 117 | | | | | Stanley Joel Osher, On certain Toeplitz operators in two variables | 123 | | | | | Washek (Vaclav) Frantisek Pfeffer and John Benson Wilbur, <i>On the</i> | | | | | | measurability of Perron integrable functions | 131 | | | | | Frank J. Polansky, On the conformal mapping of variable regions | 145 | | | | | Kouei Sekigawa and Shûkichi Tanno, Sufficient conditions for a Riemannian | | | | | | manifold to be locally symmetric | 157 | | | | | James Wilson Stepp, Locally compact Clifford semigroups | 163 | | | | | Ernest Lester Stitzinger, Frattini subalgebras of a class of solvable Lie | | | | | | algebras | 177 | | | | | George Szeto, The group character and split group algebras | 183 | | | | | Mark Lawrence Teply, <i>Homological dimension and splitting torsion</i> | | | | | | theories | 193 | | | | | David Bertram Wales, Finite linear groups of degree seven | 207 | | | | | Robert Breckenridge Warfield, Jr., An isomorphic refinement theorem for | | | | | | Abelian groups | 237 | | | | | James Edward West, The ambient homeomorphy of an incomplete subspace | | | | | | of infinite-dimensional Hilbert spaces | 257 | | | | | Peter Wilker, Adjoint product and hom functors in general topology | 269 | | | | | Daniel Eliot Wulbert, A note on the characterization of conditional | | | | | | expectation operators | 285 | | | |