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ON THE CONFORMAL MAPPING
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We establish an estimate for the functional
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C, is the circumference || = p,0 < p <1, Here f and g are
normalized conformal mapping functions of |z{ <1 onto a
pair of bounded, open, simply connected, origin containing
domains in the w plane whose boundaries are near each other
in some sense, In the second part of the paper we establish
an estimate for the functional I(f’, g’; p) in case the boundaries
are additionally assumed to be rectifiable.

We are motivated by the fact that if one of the domains is a
disc we get the case of “nearly circular” domains which has been
much studied.

Aside from an absolute constant our estimates are geometric in
nature, being expressed in terms of numbers which are derived from
properties of the boundaries of the mapped domains. They are of
interest to us because they hold uniformly for all p,0 < p <1 and
because they approach zero when one of the domains converges to the
other as described in the paper.

1. DeriniTION 1. Let D; and D, denote a pair of open, bounded,
simply connected sets in the w plane both of which contain the origin.
Let Iy and I', denote their respective boundaries. Let 4 denote the
component of D, N D, which contains the origin and let I" denote the
boundary of 4. Let A, be the radius of the largest disk lying in
the complement of I"; and having its center on I (if no such disk
exists, write A, = 0). Let\, be analogously defined. The inner distance
is defined by the formula

e =&y, I'y)) = Max (A, Ng) «

The statement ‘¢(z) is a normalized mapping function’ means that
#(2) is the conformal mapping function of one bounded, simply connected,
origin containing domain onto another and that #(0) = 0, and ¢'(0) is
positive.

The symbol C, will always be used to denote the locus |%| = p,
0sp<l.

Let R, and R, denote the radii of two circles with centers at w = 0
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146 F. J. POLANSKY

which are such that the boundaries I"; and I, lie in the ring

O0<R s|w|=ER;.

THEOREM 1. If f(2) and g(2) are the normalized mapping functions
of |z] <1 onto D; and D, respectively, if 0 < e(l'y, I',) < R,, then

& \Ue
M = — . < .
16,00 = | 170 — o) 1-1dt) < KR(5)
The number K, is an absolute constant, and the inequality holds
uniformly for all 0,0 < p < 1.

Before proving Theorem 1 we state some results which are used
in the proof.

LEMMA A. ([4], p. 349.) Let D be a bounded, simply connected
domain which contains the origin and let z = (w) be the normalized
mapping function of D onto the disk |z| < 1 in the z plane. If w
is & point of D at a distance 0 from the boundary of D, then

1—[y(w)| < 4/097°(0) .
LemMA B. ([3], p. 563.) Let w = 4(z) be the normalized mapping

function of |z| <1 onto the domain whose boundary D lies in the
ringl —oZ|w|£1L,0<0<1. Then

[, 190 — t-1dt] = Ko®.

The number K, is an absolute constant, and inequality holds uniformly
for all p,0 = p < 1.

LemMmA C. ([1], p.165.) If F(z) and 6(z) are regular in |z| <1
if 60) =0 and |0()| <1 i |2] <1, then

[, 1F6@®) a1 = | 1FO®al,
Cp Cp
uniformly valid for all 0,0 < p < 1.

2. Proof of Theorem 1. (a) From Definition 1, each point of
I will have distance at most ¢ from I";. The inverse of f(z) maps 4
onto a domain E which lies in [z < 1. Let E, denote the boundary
of E. From Lemma A, the set E, will lie in the ring

1-4y/_5 _<e1<1.

f(0)
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Since
roznt|F8 g
jzl<t| 2 1o
the set E, will lie in the ring
1-4 <fzl£1.

The above inequality fails to define a ring if ¢/R, = 1/16. We treat
the two cases separately. Let w(z) be the normalized mapping function
of |[2] <1 onto E. If ¢/R, < 1/16, we have from Lemma B,

Jioy =1, 100 - tFldt] < 16K,

1

For the case 1/16 < ¢/R, < 1, we have trivially,

J(0) < 4-2rp < 1287. %

1

Thus, if K, = Max [1287, 16K,], then

(1) J(P)§K32,0<8<R1-

(b) For0<r=<1,|z|]<1let
B.(2) = f(z) — f(r2) .

Then
5) = @) = B.®) — B0(@) + fr2) — fro(?) .
Hence
|, 170 = )] di|
(2) <[, 1B@1a] + | Bl

+ 5 |f0t) — fro@®) |-t = L+ L + L.
If f(z) = 3.7 a,2* then

I < 2mp-| | B.(t) P+ dt| = 2mpX |a, [0 (L — r*)-2mp
CP

A4S | (L — 1)
=43 |, PA — YA+ 7+ 72+ -o0 + 7Y
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<Al — 2 (. |*+k) = 4z(1 — r)-(area of D;)
<4n(l — r)-nR:.

Thus, if K} = 47%,

(3) L<KRVI—r,0<r<1.
From Lemma C, the same bound is valid for I:
(4) L<KRV1I—-r,0sr<1.
(c) If 0<r<a<l, we have for the integrand of: I;:
1 S ' 1 1 l
t) — ) < — . — | d
| f(rt) — flro@®) | = - Calf(V)l T T T e | dv|
1 S ‘ r® — rt l
< = . d
T2z oalf(v)[ (7 — r)(v — rw) 4|
< suplfl-rlw—tlg [dv]
= or 0 |Y — 7t]+|Y — r0 |

sBlesuf] i )]t

<R21w~t[[ ona ]/[ ora ]1/2
=7 o @ — |7t a— rof 1 -

Let ¢ — 1 and we obtain

|frt) - feroey| = O = o< v
Hence, from (1)
[, 1700 = fro@®) -1 dt| s 2] o) — ¢ fa
Cp —rlJe,
-Rz 2 M O
(5) gl_r[ﬁopm—tudu] /370
<

R, & \T”
e zE(E)]
If we combine (2), (3), (4) and (5), we obtain the estimate

[, 170 = fo®) |- at|

— 2
< 2KRVT =7 + o f_ezr [27ZK3<—}%>] 0<r<l.

(6)

(d) The whole argument can be repeated with ¢(z) in place of"
f). In this case we shall have an estimate analogous to (6):
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|, 196) = g@®)|-1dt]

R e\
< 2K, R/T= ____2__[ __]
= ¥ty 'r+1 2”K3<R> ,0<r<1.

—r 1

(6)

The function w,(z) is the normalized mapping function of |z| < 1 onto
the image of 4 under the inverse of g(z). Since f(®w(z)) and g(w,(2))
are both normalized mapping functions from |z| < 1 onto 4 it follows
from the uniqueness that

(7) fw(z)) = g(0:(2), 2] <1.

If we combine (6), (6’), (7) and choose » so that 1 — » = (¢/R)'?, the
conclusion of the theorem is established.

Throughout the remainder of the paper we shall assume the
situation of Theorem 1 with the added hypothesis that I"; and I", are
rectifiable Jordan curves of lengths L, and L,. In this case it is
well-known that D, is the continuous image of |z| < 1 and that if
f'(z) is defined at the boundary by

£1(e) = Lim {& = J(¢7) _{;(fw) lzl =1,

2676 2z

then f’(e®) exists almost everywhere, is Lebesgue summable, and
27 A
L= 1rd .

3. The following definition ([4], p.337) and lemma ([4], p. 337)
are useful.

DEFINITION @. Let ¢ denote a crosscut of D, which does not
pass through w = 0. Let T denote that subregion of D, determined
by ¢ which does not contain w = 0. Let \ denote the diameter of ¢
and let 4 denote the diameter of T. For any o6 > 0 consider all
possible crosscuts ¢ for which A < 6. The crosscut modulus is defined

is defined to be
7;(0) = sup 4 .
A6
The crosscut modulus is monotonic and has the property:
7,0)—0 as 0—0.

LEMMA D. Let A; denote the area of Dy. Let z, be any point
on |z| =1 and k, the part of the circle |z — z,| = s which lies n
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|z] < 1. Then for every s,0 < s <1, there exists @ 0, s <0 < §'*
such that the image of k, is a crosscut of length

1 < [2rAL N\
log 1
S
We introduce the abbreviation:

(8) Y,(0) = 1), 27”1{ ”2,0<5< 1.
]og—é—

An immediate consequence of Lemma D is

LemMmA 1.
hy(r) = %1]1:13 [f(&) —fra) | = vl —7),0<r<1.

4. DEFINITION 2. For m = 2, let {w,, w,, w,, «+-, w,} be any set
of m distinct points taken in cyclic order on 7", and so distributed
that I, is partitioned into m subarcs of equal length, each subarc
having length L;,. Let I, be the length of the perimeter of the
cyclically determined polygon, and let A, the norm of the partition,
be defined by '

A= Max[|w, — Wal, |we — w, |, |Ws — Wy, v+, | W — Wry]] -

The number I, can be written as
bLi=w — w,| ‘l'}g | Wiy — Wy | -
For any ¢ > 0 consider all partitions for which » < 4. Let
Uqfd) = Infl,.
As98

It is easily shown that Sup U/J) = L,. We define the modulus of
rectifiability to be

£s0) = Ly — U40) .
The modulus {,(d) is monotonic and has the property: {,(6) — 0 as 6 — 0.

LEMMA 2. If Ly(r) ts the length of the level curve in D; which
18 the image of |z| = r, then
Ly — Lyr) = C;(vVv@ — 7)) + 2L v, 0 — 7)
+4v,(1—-7),0<r<1.
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Proof. Let the positive integer m be defined by

\ L
9 m = [.,_..__.__f_] + 2
(9) Vvl —7)
Let w,, w,, -+, w,, be a set of points in eyclic order I';, so arranged

that ", is partitioned into m equal subarcs, each subarc having length
Ly/m. Clearly the norm of the partition does not exceed L,/m and
if 7, is the length of the perimeter of the polygon, then

(10) L — = (&),

We define the points z,, @, by w, = f(z:), ¥, = f(rz;): The set @,
determines a polygon inscribed in the level curve in D, which is the
image of |z| = r. Comparing corresponding sides of the polygons, we
have from Lemma 1,

[ Wysy — Wi | S | Wiyy — Wiy | + "wk%l“'wkl'l‘ [0, — wy |
S he(r) + | Wiy — Wi | + hp(r)
S 2041 — 1) + [ Wiy — W] .

Similarly,
| Wy — Wi | £ 20,1 — 1) + | Wiy — Wi | »
Thus, if I/, is the length of the perimeter of the level curve polygon,
(11) |7 — 1n] < 2my (L — 7).
Noting that I, < Ls(r), we have from (10) and (11)
L;—Lir)=L; = U, =L, — L, +{l.—U.].

(12) < Q( Lf) + 2my,(1 — 7).
m
From (9)
V(1 —r7) =m= 1/vf(1 —7) 2.

The conclusion follows from (10), (11) and (12).

In the estimate of Lemma 2, it would appear that the first term
should dominate the others and this will be so if {, is sufficiently weak.
However, it is possible (e.g., if D, is a disk) for the term 2L 1 v,
to be dominant. For purpose of final estimate we introduce the
boundary functional

13) B0) = £,(1/v;(0)) + 2LA/v,(0) + 4v,),0<d < 1.
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LEMMA 3.
[, 1770 = sren |- dt) < 2V T =,
0<r<1l, forall p,0<p<1.
Proof. The function 1/f(z) (i.e., the branch which is positive

at the origin) is regular in |z| < 1. If Vf'(z) = 3.5 ¢.2%, it is well
known that Y |c¢,|* is convergent and

L, = [ VI8 = 23 e,

L (r) = S:”Vf’(we"e)]/f’(re"")rd@ =2nr-Xc, r*, 0<r<1.
We write
[, 1r@ - reworia]

<\, VF® - VD -ldtl-| (VI + VD dt|

=11,
I = 2103 | ¢, [P0™(1 — 2% + ) < 273 | ¢, (L — %)

= Ly — Lf(”')‘% S L;— Lyr),

I, =210 3 | e, | 0*(1 + 2% + 1) < 273( ¢, [*-4) = 4L, .

From these inequalities and Lemma 2, the conclusion is apparent.
5. Final estimates. We assert:

THEOREM 2. If I'; and I", are rectifiable Jordan curves of lengths
L; and L,, if 0 <¢/R, <1, then

I(f’, ¢'s0) < 2IV'L; + V'L, + M/RI"IV'BA0) + 2V L, ,
untformly for all 0, 0=<p0<1,

where ¢ = (¢/R)"™, p = |L; — L,|, M = Max [K,R,, 2V L ,K,R,].

Proof. Write
L7 g0 = | 150 = £ellat + | 1760 — gl de)
+ Sc lg'(rt) — '@ |-|dt| =L + L, + L.

Choose 1 — r = ¢, from Lemma 3,
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I, £ 2VLBs(0) .

Let 0 < p < @ <1, then, from Theorem 1
I < S [,_1_5 J() — g(Z) dy l]'[ dtl < KLRz(E/Rl)”“
o l.27 Jou ! (Y — 1) 1a-ry
= K.R,0* < KR .

From the proof of Lemma 3 (with g in place of f)
I3 = 2v Ly(La - -Lg(’r))ll2 ’
and

L,— Lr)£|L,— Ls| + Ly — Lg(r) + | Ly(r) — Ly,(7)|
=p+ A+ B.

From Lemma 2, A < B/(0), and
B= || 1renl - 1geolidl s | 1760 - ool do
= I, £ K,R,0*.
Thus,
L=<2VL,(¢ + A+ By < 2V L, (1" + A + B'?) ,
Combining estimates we have

(14) I(f', ¢ 0) < 2V'L; + VI)VB0)
+ zl/Lmu + (zl/LyKle + K1R2)0' o

From (8) and (13) and the definition of 7,,
VBG) Z 200" 2 vf<(_—2”Af )"2>”2 <2nAf>“*

logL

£ g

1\

log 1
o
Z= ((2n°Ri)*-0) =z Rio .

Hence

(15) @VLEE + KR)o s 2MVE)

the conclusion follows from (14) and (15).

LEMMA 4. If p=|L; — L,| and if
I*=8SupI(f',¢;0),0=p<1, them p<I*.
I

153
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Proof. We have

| Ly(0) —

=||, 17@11et = g a

Sc /@) = g'@ -] dt| = I(f', g's 0) = I* .
?
Let o — 1 on the left and the lemma is proved.

LEMMA 5.

| fe) — g(e?)| < I*
Proof. The Fejer-Riesz inequality asserts that
A=\ |HOPdv< | | HE) P da =B,
p >0 and z is real.

Here H(z) which is regular in |[z| < 1 belongs to the Hardy class H?
in|z2| <£1. Letp =1 and we make the choice H(z) = 0e’(f’'(z06") —

9'(z0€'%)). Noting that A>| H(x)dxl, that 2B = I(f’, ¢'; o = I7,

we let p—1 and we get the conclusion of the lemma.
We are now able to state our convergence theorem as

THEOREM 3. If the f boundary is held fized and the g boundary
18 allowed to vary, a necessary and sufficient condition that I(f', ¢'; 0) —
0 uniformly for all 0,0 < p.<1, is that p + 0 —0.

Proof. We get the sufficiency from Theorem 2. From Lemma 4
we see that I* — 0 implies that ¢ —0 which is one part of the
necessity. From Lemma 5, we see that if I* is arbitrarily small the
boundary point f(e*) will ‘bei_ arbitrarily close to the g boundary and
vice versa. So we have I* >0 implies € —0 implies that inf B, >0
so that I*—0 implies that ¢ — 0. This completes the proof of
Theorem 3.

Without estimate, S. E. Warschawski [2] established a result that
is similar to Theorem 3. -
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