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SUFFICIENT CONDITIONS FOR A RIEMANNIAN
MANIFOLD TO BE LOCALLY SYMMETRIC

KOUEI SEKIGAWA AND SHOUKICHI TANNO

In a locally symmetric Riemannian manifold the scalar
curvature is constant and each k-th covariant derivative of
the Riemannian curvature tensor vanishes, In this note, we
show that if the covariant derivatives of the Riemannian
curvature tensor satisfy some algebraic conditions at each
point, then the Riemannian manifold is locally symmetric,

Let R be the Riemannian curvature tensor of a Riemannian mani-
fold M™ with a positive-definite metric tensor g. Manifolds and ten-
sors are assumed to be of class C= unless otherwise stated. We
denote by V the Riemannian connection defined by g. For tangent
vectors X and Y, we consider R(X, Y) as a derivation of the tensor
algebra at each point. A conjecture by XK. Nomizu [4] is that
R(X,Y)-R=0 on a complete and irreducible manifold M™(m = 3)
implies VR = 0, that is, M™ is locally symmetric. Here we consider
some additional conditions.

For an integer k& and tangent vectors V,, ---, V, at a point » of
M™, we adopt a notation:

(V{?R) = (Vk’ Views =22, Vi VkR)
= (Vltc Vl‘:-—-l M V{Vtvs b VrRl?cd) y

where V¢, etc., are components of V,, etec.,, and V.V, ... V.R{, are
components of the k-th covariant derivative V*R of R in local co-
ordinates.

PrROPOSITION 1. Let M™(m = 3) be a real analytic Riemannian
manifold. Assume that
(1.0) the restricted holonomy group is irreducible,
1.1 RX,Y)-R=0,
1.2) RX, Y)-(VER) =0 for k=1,2, ---.
Then M™ is locally symmetric.

Here we note that condition (1.0) means that it holds at some,
hence every, point and condition (1.1), and (1.2), mean that for any
point p and for any tangent vectors X, Y, V,, ---, V, at p, they hold.

PROPOSITION 2. Let M™(m = 3) be a Riemannian manifold. As-
sume (1.1) and (1.2) and that

157



158 KOUEI SEKIGAWA AND SHUKICHI TANNO

(1.0) the infinitesimal holonomy group is irreducible at every point.
Then M™ is locally symmetric. '

Propositions 1 and 2 are essentially related to the following results.

PROPOSITION 3. Let M™(m = 3) be a Riemannian manifold. As-
sume that the restricted holonomy group H® (the infinitesimal holo-
nomy group H', resp.) is trreducible, and R is invariant by H°
(H', resp.). Then M™ s locally symmetric.

ProrosiTiON 3. (J. Stmons [5], p. 233) Let M™ (m = 3) be an
irreducible Riemannian manifold. Assume that R s invariant by
the holonomy group H. Then M™ is locally symmetric.

Proposition 3 is a generalization of a result by A. Lichnerowiez ([2],
p. 11), which contains an assumption of compactness. We remark
here that condition (1.2) is equivalent to

1.2y RX, Y)(VyVy,_, - VyB)y=0for k=1,2, .-+,

where X, Y, V,, ---, V, are vector fields on M™.
With respect to Nomizu’s conjecture and the above propositions
we have

THEOREM 4. Let M™ (m = 3) be a Riemannian manifold. As-
sume that

(i) the scalar curvature S is constant,

(ii) RX,Y)-R=0,

(iiiy RX, Y)-V,R =0,

(iv) R(X, Y)-(X, V; V:R) = 0,

(or (iv) R(X, Y).-ViV,R =0 for vector fields).
Then M™ is locally symmetric.

THEOREM 5. Let M™ (m = 3) be a Riemannian manifold. As-
sume that

(i) the Ricet curvature tensor R, is parallel; VR, = 0,

(ii) R(X, Y)-R=0,

(iiiy RX, Y)-V,R = 0.
Then M™ is locally symmetric.

In Theorems 4 and 5, if m = 2, then VR, = 0 implies VE = 0.

In Theorem 5, if M™ is compact, (iii) can be dropped (A. Lich-
nerowicz [2], or K. Yano [6], p. 222).

In §2 we reduce proofs of Propositions 1 and 2 to that of Proposi-
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tion 3, and next we reduce proofs of Propositions 3 and 3’ to that of
Theorem 4. In §3 we prove Theorems 4 and 5.

2. Holonomy algebras. Conditions (1.1) and (1.2) imply that

[B(X, Y), (V¢iR)(4, B)] = (VVE)R(X, Y)A, B)

2.1) + (VER)(4, R(X, Y)B)

for £ =0,1, ---, where V'R means R, and [T, T'] for linear trans-
formations T, T means TT' — T'T.
Now we show

LEMMA 2.1. The condition (2.1) implies

[(ViR)X, Y), (ViR)(4, B)] = (ViR)(Vi-E)X, Y)A, B)

2.2) + (ViR)(4, (Vi.R)(X, Y)B)

Sfor 3,k =0, 1; 2, «--. And (2.1) is equivalent to

[(ViR)(X, Y), R(A, B)] = B(Vi.R)(X, Y)A, B)

23) + R(A, (V4R)(X, Y)B)

Jor 5=0,1,2, ...,

Proof. We prove (2.2) by induction in j and by tensor calculus
in local coordinates. By (2.1), (2.2) holds for (4, k) = (0, k), k = 0,
1,2, ---. Assume that (2.2) holds for (s — 1, k), (7 — 2, k), ---, (0, k),
k=0,1,2, .... Then, denoting by V,V, -.. V.R%,, the j-th covariant
derivative of R and by V,.-- V,R¥, the k-th covariant derivative of
R, we show

Vtvs b VTR:zny e VeR:ab - Vf M VeRZathVs e VrR:xy

2.4
( ) - Vf M VeR;’vatVs e VrRny + Vf M VeRgathVs M VrRan .

In fact, we have

ViV oo VR NVy o VRl — Vs -oo VRLV,Y, -« VR,

= VY, -+ VR, V; -+ V.Ri)
-V, VR,V V, .-V, Ry,
- Vt(vf <ee VLRIV, et VrR:xy)
+ V. Vs VeRﬁasz cte Vngxu

= Vt(vf cee VeRgvas cee VTR;’W -+ Vf e VeRg(st cee VTRZW)
— Voo VLRE, NV Vs oo VR, (by (2.2) for (5 — 1, k))
+ V.Vy.-. VRV, - V.Ry,,

= V) ot VRV, o VR + Voot VRV, - VL,
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+ (Vevf e VeRzasz i 'VrR:z‘zy - Vc e VrRZ:thVf e VeRgub)
-+ (Vtvf e VeRgusz M VrR:xy + Vtvf bl VcRgast e V'ngacy) .

The second and third terms vanish by (2.2) for (§ —~ 1, k¥ + 1). There-
fore we have (2.4).
Similarly we can show that (2.3) implies (2.2), including (2.1).

By the theory of holonomy groups (cf. A. Nijenhuis [3]), the set
of linear transformations

(2.5) EX, Y), (VwR)(X, Y), (Vi R)(X, Y), -+~

for X, Y, W, --- € M,, the tangent space to M at p of M, spans a
Lie algebra A, called the infinitesimal holonomy algebra at ». &,
generates the infinitesimal holonomy group H, which is a subgroup
of the local holonomy group H} = H%(U). Clearly H} is a subgroup
of the restricted holonomy group H:. If a Riemannian manifold is
real analytic we have H' = H* = H". :

The condition (2.83) implies that

(2.6) [T, R(A, B)] = R(TA, B) + R(A, TB)

for any Teh,. This says that R is invariant by 7. Therefore, for
any element a e H, we have

2.7) aR(A, B)IC = R(ad, aB)aC  for A, B,CeM, .

Thus, we have reduced proofs of Propositions 1 and 2 to proof of
Proposition 3.

Since (2.7) or (2.6) is equivalent to (2.1), condition (2.7) implies
conditions (ii), (iii) and (iv) of Theorem 4. Consequently, if we show
that, under the conditions in Proposition 3 (3, resp.), the scalar curva-
ture S is constant, then Proposition 3 (8, resp.) will follow from
Theorem 4.

Let E;, 1 <t < m, be an orthonormal basis at p. Then the Ricei
curvature tensor R, is given by

RB(X, Y) =X 9R(<X, E)Y, E) .

Since R is invariant by H’ or H® or H, we have R(X, Y) = R(aX, aY)
for any ac H', or H® or H. Since H' or H°® or H is irreducible, we
have some real number )\ so that R, = Ag at p. Because p is an
arbitrary point of M and m = 3, » is constant on M, and hence S =
m\ is constant.

3. Proofs of Theorems 4 and 5. To prove theorems it suf-
fices to show two propositions below.
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ProposITION 3.1. On M™ (m = 3) assume that

(i) the scalar curvature S is constant,

(ii) (R(X, Y)-R)(X, V) =0,

(iii) (R(X, Y)-V,R(X, Y)V =0,

(iv) (B(X, Y)-V,R)(V, X) =0,

(v) (BX,Y)(X,V;VR)V,Y)=0,

(or (v) (R(X, Y)-ViV,.R)V, Y) =0 for vector fields).
Then we have VR = 0.

Proof. Let {E;} be an orthonormal basis at p of M. Put X = E,,
Y=F, V=EF, in (iii) and take a sum on x, ¥, v. Then we have

Ri'r:cvaRrvzy _ RrvzvaRi“W — erzvaRivry _ RryxquRiva — O .
The third and fourth terms vanish. We apply the second Bianchi
identity to the first two terms;

Rir(—V R’ — V,R.,) = —2R"™V,R,, ,
—R"(-V.R,,,, — V,R,,) = R""'V.R,,., + R"*'V,R,.,
= R"V;R,,sy + RV, Rirsy
Therefore, we have

3.1) —4R"™V,R,, + R"V'R,,.,, = 0 .
Likewise, (iv) implies that

(3.2 R™V,R,, + R*, V,R, =0.
And (v) implies that

3.3 RvV,V,R,, + R",*V,V,R; =0 .

For (v)’ we assume that E; are local vector fields such that (VE;), = 0
and {E;} forms an orthonormal basis at p. Then we have the same
(3.8).
Since V,R? = (1/2)V,.S = 0, by (3.1), (3.2) and (3.3), we have
RV, V,R,, =0,
R™V.R,., =0.

On the other hand, in a Riemannian manifold generally we have
thh(RijklRijkl) = 2<VhR,;jlehRijkl)
+ 8R¥MV . V.R;, + 4R'*B, ..,

where Bj;;,.,,X*Y" are components of R(X, Y)-R (A. Lichnerowicz [2],
p. 10). Since (ii) is equivalent to B, .; = 0, we have V,R;;,, = 0.

(3.4)

PROPOSITION 3.2. On M™ (m = 3) assume that
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(i) VR, =0,

(ii) (RX, Y)-R)(X, V) =0,

(i) (R(X, Y)-V,R}(X, Y)=0.
Then we have VR = 0,

Proof. We have (3.1) by (iii). Then we have V,(R;;, R"*) = 0.
Therefore, (ii) and (3.4) show VE = 0.
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