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In this paper the Lie algebra analogues to groups with
property E of Bechtell are investigated. Let # be the class
of solvable Lie algebras with the following property: if H is
a subalgebra of L, then φ(H) g φ(L) where φ(L) denotes the
Frattini subalgebra of L; that is, φ(L) is the intersection of
all maximal subalgebras of L. Groups with the analogous
property are called 2£-groups by Bechtell. The class 36 is
shown to contain all solvable Lie algebras whose derived
algebra is nilpotent. Necessary conditions are found such that
an ideal N of Le 36 be the Frattini subalgebra of L. Only
solvable Lie algebras of finite dimension are considered here.

The following notation will be used. We let N(L) be the nil
radical of L and S(L) be the socle of L; that is, S(L) is the union
of all minimal ideals of L. If A and B are subalgebras of L, let
ZB(A) be the centralizer of A in B. The center of A will be denoted
by Z(A). If [B, A] S A, we let Ad̂ (JS) = {ad 6 restricted to A; for
all beB}. U will be the derived algebra of L and L" = (!/)'•

PROPOSITION 1. Let L be a Lie algebra such that Lf is nilpotent.
Then the following are equivalent:

(1) φ(L) = 0.
(2) N(L) — S(L) and N(L) is complemented by a subalgebra.
(3) U is abelian, is a semi-simple L-module and is comple-

mented by a subalgebra.
Under these conditions, Cartan subalgebras of L are exactly those

subalgebras complementary to U.

Proof. Assume (1) holds. Nilpotency of 1/ implies φ(L) Ξ2 L"9

so L' is abelian and may be regarded as an L/L'-module. We may
assume L' = X 0 Vp9 Vp indecomposable L/L'-submodules. If M is a
maximal subalgebra of L and if Vp g£ Λf, then M Π Vp is an ideal of
L. If S is an L/Z/-submodule of Vp properly contained between Mp\VP

and Vp, then M + S is a subalgebra of L properly contained between
M and L, contradicting the maximality of M. Therefore M contains
all maximal submodules of Vp for each p. Then φ(L) = 0 implies the
intersection of all maximal submodules of VP is zero for each p. If
Vl9 , Vs are maximal submodules of VP with Vx Π Π Vs = 0 and
are minimal with respect to this property, we have V — V2 Π Vs Φ 0
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and VΠ VΊ — 0 so that 7 © ^ = VP, contradicting indecomposability.
Therefore each VP is irreducible and U is a completely reducible L/Z/-
module and is also a completely reducible L-module. Since L is solva-
ble it contains Cartan subalgebras by Theorem 3 of [1]. Let H be
a Cartan subalgebra of L and let LQ and Lt be the Fitting null and
one component of L with respect to H. Then L = Lo + Lx = H + Lt £
JET + L' shows L = H+ L'. We claim that £Γn 1/ = 0. If Hf] U Φ 0,
then, since U is abelian, H is nilpotent and Z/ is a completely re-
ducible L-module, 1/ is a sum of irreducible iί-modules, Ulf •••, Uσ,
such that for each Ui[^ [Uif H] H] = 0 for some&, hence [U{, H] = 0.

Thus [if, 1/ Π H] — 0. One sees that each Ut is a central minimal
ideal of L, and since 0(L) = 0» #* *s complemented by a maximal sub-
algebra Λf. Therefore U< is a one-dimensional direct summand of L,
contradicting £7{ £ L'. Hence U C\H — 0 and ff is a complement to
I/' in L. Since [£Γ, H] £ Hf)L' = 0, JET is abelian. Any minimal ideal
not in I/' satisfies [L, A] £ A Π Lr = 0, so is central. Therefore S(L) =
L' + Z{L) and, since ff is a Cartan subalgebra, Z(L) £ H. Let Ho

be a complementary subspace to Z{L) in ΐ ί . One sees that N(L) =
L' + Z(L) + (N(L)PιH0) = S(L) + (iV(L) nίfo). If λ is a nonzero ele-
ment in N(L)f)HQ, ad /& is nilpotent but not zero which implies

fc

[Vp, h] = F^ for some F, £ L' and [ -[VP7h\- -h] = 0 for some &, a
contradiction. Thus iS(L) = ^(L) and JE/o is a complement. Conse-
quently (1) implies (2).

Assume (2) holds and proceed by induction on the dimension of
L. Since 1/ £ N(L) — S(L) and minimal ideals are abelian, L' is
abelian. If every minimal ideal of L is contained in Z/, then S(L) = Lf

and (3) follows. Therefore let A be a minimal ideal of L such that
Aξ^U. Hence A g£ ̂ (L) and there exists a maximal subalgebra M
of L such that L = M + A. Since [L, A] £ A n 1/ = 0, A is central,
hence one-dimensional. It follows that L is the Lie algebra direct
sum of M and A. Since M inherits the condition (2), M satisfies (3)
by induction. It now follows that L also satisfies (3).

Assume (3) holds. Then U is a sum of minimal ideals of L, which
we denote by A19 , Ak, and L = U + H, H a subalgebra of L. Since
H' £ i ϊ n l / = 0, H is abelian. One sees that 1/ = [I/, H) and, con-
sequently, A< = [Aif H] for all i. Since ZA.{H) is central in L, ZA.(H)
is an ideal in L contained in At. Since ZA.(H) Φ Ai9 ZA.(H) = 0. It
follows that i ϊ is its own normalizer, hence is a Cartan subalgebra
of L. Now i ϊ + A1 + 4- A; + + Ak is a maximal subalgebra
of L since any containing algebra has a nonzero projection on Ai which
is ad H stable, hence equal to A«. Therefore φ(L) £ i ϊ and 0(L) £

' = 0. Hence (1) holds.
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That complements to U are Cartan subalgebras is shown in (3)
implies (1). That Cartan subalgebras are complements to 1/ is shown
in (1) implies (2). This completes the proof of Proposition 1.

THEOREM 1. Let L be a Lie algebra such that 1/ is nilpotent
and φ(L) = 0. Then, for any subalgebra M of L, φ(M) — 0.

Proof. Suppose U £ M. Let H be a complement to U in L, so
Hf]M is a complement to U in M. Since L acts completely reducibly
on U and U is abelian, H acts completely reducibly on U. Then,
since H is abelian, HΓ\M acts completely reducibly on Z/, hence so
does M. Therefore 1/ = Λf' φ A for some ideal A in M where M
acts completely reducibly on M' and A + (Hf)M) is a complementary
subalgebra of Mf in M. Thus by Proposition 1, Φ(M) = 0.

Suppose 1/ §£ M. Since M + L' falls in the preceeding case, we
may assume M + 1/ — L. Since 1/ is abelian, L'f)M is an ideal in
L9 M/(L'nM) complements L'/(L'nM) = (L/L'nM)' in L/(L'f)M) and
M/(L'nM) acts completely reducibly in L'/(L'ΓiM), M/(L'f)M) is a
Cartan subalgebra of L/(L'f)M). Let C be a Cartan subalgebra of
M. By Lemma 4 of [1],.C is a Cartan subalgebra of L. Thus C is
a complement to U and C + (L'flJί) = M since C £ M. Hence C is
a complement to L'Γ\M in ikf. Since M acts completely reducibly on
L' f]M and J ί ' g L ' n M , J l ί acts completely reducibly on ΛF, L'ΠM =
M' © (1/ΠZ(ΛΓ)) and, since Z(ΛΓ) £ C, Z ( A Γ ) Π L ' g C n I - 0 . There-
fore C = ΛΓ = M and CnM' = 0. Now Λf satisfies part (3) of Proposi-
tion 1, hence φ(M) — 0.

If L is a solvable Lie algebra it has been shown in [2] that φ(L)
is an ideal of L. We look for a condition on the subalgebras of L/ψ(L)
which are necessary and sufficient that L e ϊ . In order to do this
the following concept is introduced.

We shall say that a Lie algebra L is the reduced partial sum of an
ideal A and a subalgebra B if L = A + B and for any subalgebra C
of L such that L - 4 + C a n d C g 5 then C - B. It is noted that
if A g 0(L), then there exists & B Φ L such that L is the reduced
partial sum of A and B. On the other hand, if A £ 0(L) and L is
the reduced partial sum of A and B, then B = L.

LEMMA 1. Let L be the reduced partial sum of A and B. Then

Proof. Suppose C = AΓ)B ςL Φ(B). Then B contains a subalgebra
D such that C + D = B. Then L = A + £ = A + C + I) = A + iλ
This contradicts the minimality of B.
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LEMMA 2. Let L be the reduced partial sum of A and B. Then
φ(L/A) ~A + φ(B)/A.

Proof. Since i n ΰ g φ(B), AΠΦ(B) = Af]B. Since L/A ~ A+•
B/A ~ B/A n B, φ(L/A) ~ φ(B/A n B) ~ φ(B)/A nB = φ(B)/A f) φ(B) ~
A

PROPOSITION 2. Tfce following are equivalent for the Lie algebra
L:

(1) L e £.
(2) jPor αw# subalgebra H of L\φ(L), φ(H) = 0.

Proof. Let L satisfy (1) and let π: L —»L/ψ(L) be the natural
homomorphism. Then 0(τr(L)) = π(φ(L)) = 0. Let W be a subalgebra
of L/φ(L) and let TF be the subalgebra of L which contains φ(L) and
corresponds to W. Since L satisfies (1), φ( W) £ #(1/). If
then (̂τr(T7)) = π(φ(W)) = π(φ(L)) = 0. Suppose then that
Then W can be represented as a reduced partial sum W — Φ(L) + iΓ..
Let T be a subalgebra of W such that Γ/ (̂L) ~ φ(W/φ(L)). If Γ/^(L) ^ 0,,
then T= Tf](Φ(L) + K) = (Γn^(L)) + (ΓnΐΓ) = tf(L) + (ΓnJSΓ). Con-
sequently there exists a n x e Tn K, x £ Φ(L). Since φ(K) Q Φ(L), x ί 0(Jf)
and there exists a maximum subalgebra S oί K such that x£ S. We
claim that either φ(L) + S = TF or ̂ (L) + S is maximal in W. Suppose
Φ(L) + S Φ W and let J be a subalgebra of W which contains φ(L) + S..
Then SQJf]K, so, by the maximality of S, either JΠK=S or
Jf]K = K. UJf]K= S, then ^(L) + S = ̂ (L) + (Jn JSΓ> = Jf)(Φ(L) +
jfiΓ) = J n TΓ = J. If JΠK = X, then J 3 JSΓ and, since J 2 ^(L), J 3
φ(L) + K = W, hence J = W. Consequently there exist no subalgebras
of W properly contained between φ(L) + S and W, hence either φ(L) +
S = W or ̂ (L) + S is maximal in TF. If #(L) + S - W, then ^(L) + K
is not a reduced partial sum which is a contradiction. If φ{L) + S
is maximal in W, then φ(L) + S/^(L) 3 Φ(W/φ(L)) ~ T/φ(L). Hence
Γ S Φ(L) + S. Since S S ^(^) + S and cc e Γn JBΓc Γ S ^W + S, iΓ =
{S, x) S ^(L) + S. Then TΓ - φ(L) + K S ^(L) + Sf S TF implies 0(L) +
i ί is not a reduced partial sum, a contradiction. Hence φ(W) —
?y^(L) = 0 and (2) is satisfied.

If L/φ(L) satisfies (2), then π(φ(H)) S Φ(π(H)) = 0 for every sub-
algebra H of L. Then ^(iϊ) £ ^(L) for every subalgebra H of L.

Combining Proposition 2 and Theorem 1 we have

THEOREM 2. Lei L be a Lie algebra such that U is nilpotent.
Then LeX.

THEOREM 3. Let L e ϊ and let T be a Lie homomorphism of L~
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Then T(φ(L)) = Φ(T(L)).

Proof. T{φ(L)) is always contained in ψ(T(L)) by Proposition 1
in [6]. If N = kernel T £ Φ(L), then equality holds by Proposition 2
in [6]. Suppose N ς£ Φ(L). Let L = N + K be a reduced partial sum.
Using Lemma 2, φ(T(L)) = φ(L/N) ~N+ φ(K)/N = T(φ(K)). Since
T(N + φ(L)) = T(φ(L))SΦ(T(L)) = φ(L/N) = 2χjV + φ{K)), N + ^(L)S
N + ίK2Γ) Ξ iV + 0(L). Hence N 4- 0(L) = N + ̂ (ϋC) and ?KΓ(L)) =
T(φ(K)) = 2XJ5(L)).

THEOREM 4. Lei L e X. Necessary conditions that an ideal N
of L be the Frattini subalgebra of L are that

(1) φ(AdN(L)) = AάN(φ(L)).
(2) There exists a subalgebra M of L such that M/N ~

Proof. (1) Let T be the mapping from L into the derivation
algebra of N by T(x) = &dx restricted to N for all xeL. Then
T(φ(L)) = AάN (φ(L)) - φ{T{L)) = φ(AdN (D).

(2) Let M = ZL(φ(L)). Suppose that M £ φ(L) and let F = L/φ(L)
and A = (M + φ(L))/φ(L). Since Ad^, (L) 2̂  L/M and Ad (̂L) (Φ(L)) ~
ψ(L)/Z(φ(L)) = φ(L)/MΓίφ(L) = (M+φ(L))/M, F/A~(L/φ(L))/(M + φ(L)/
φ{L)) ~ L/(M + φ(L)) ~ (L/M)/((M + φ(L))/M) ~ Adφa)(L)/Adφa)(Φ(L)).
Since φ(F) = 0, there exists a subalgebra D in F such that ί7 is the
reduced partial sum of A and D. Using Proposition 2 and Lemma 1,
Af]D £ 0(JD) = 0, hence i n ΰ = 0. Let J£ be the subalgebra of L
which contains φ(L) and corresponds to D. Then E/φ(L) ~ D ~ F/A ^
Ad,α) (L)/Adφ{L) (φ(L)). If I g ^ L ) , then Ad,α) (L)/Ad,α)

(L/M)/(φ(L)/Z(φ(L))) - (L/M)/(φ(L)/MΠ Φ(L)) = (LjM)/(φ(L)/M) ~
Related to part (1) of Theorem 4 are the following results.

THEOREM 5. Let L e 36 αmϋ let K be an ideal of L containing
φ(L). Then φ(Adκ (L)) - Ad^ (K) if and only if K = φ(L) + Z(K).

Proof. Let T be the Lie homomorphism from L into the deriva-
tion algebra of K given by T(x) — ad x restricted to K for each xe L.
Then ^(Ad* (L)) = Φ{T(L)) = T(φ(L)) = Ad* (φ{L)) ~ φ(L)/Zφa)(K) =
φ(L)/(Z(K)f)φ(L))~(φ(L) + Z(K))/Z(K). If φ(L) + Z(K) = K, then
Adκ(K)^K/Z(K) = (φ(L) + Z(K))/Z(K)~φ(Adκ (L)). If φ(L) + Z(K)c
K, then Ad,, (K) ~ K/Z(K)^>(φ(L) + Z(K))/Z(K) = φ{Adκ (L)).

THEOREM 6. Let L e ϊ and let A be an ideal of L contained in
φ(L). Then φ{KάA (L)) a Ad4 (A) if and only if φ(L) = A + ZφiL)(A).
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Proof. If φ(L) = A + Zφ{L)(A), then AdA(A) = A.άΛ(Φ(L)) = T(φ(L)) =.
φ{T{L)) = ^(Ad^(L)).

Conversely, Ad^ (L) cz L/ZL(A) and ZL{A) + A/ZL(A) cz A/Z(A) =
Ad^ (A). Then L/ZL(A) + A ~ AdA (L)/AdA (A) and φ(L/ZL(A) + A) ~
φ{AdA (L)/AdA (A)) = φ(AdA (L))/AdA (A) = 0. Hence φ(L) S ^ ( A ) + A
and ^(L) = Zφ{L){A) + A.

The author wishes to thank the referee for many helpful com-
ments. In particular the present form of Proposition 1 and Theorem
1 are his generalizations to results originally submitted.
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