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POWER SERIES SEMIGROUP RINGS

JOHN DAUNS

A general method is given for constructing power series
rings with exponents in a semigroup that need not be can-
celϊative. Supports of power series need not be finite unions
of inversely well ordered sets.

1* Semigroups* The objective is to introduce the usual power
series multiplication in subsets bigger than the semigroup ring.

NOTATION 1.1. For a semigroup Γ and any ring R consider
functions a: Γ—+R, or alternatively, a = X a(s)s with a(s) e R. Define
the support of a—written as suppα:—to be the set

supp = a — {s e Γ \ a(s) Φ 0} .

Let P = P(Γ, R) = P(Γ) denote all a such that suppα is finite, i.e.,
the semigroup ring.

1.2. If in addition Γ is a partially ordered set (notation: po-set),
let W = W(Γ, R) = W(Γ) be the abelian group of all those a whose
support supp a is the join of a finite number of inversely well ordered
sets.

DEFINITION 1.3. A semigroup Γ is a block semigroup if there
exists a set {Γ(k) \ k e /} of subsets of Γ, called blocks, such that
Γ - U {Γ(k) I kel}, where each block is a po-set, and the following
four conditions are satisfied.

(1) For any index n, there are only a finite number of ordered
pairs (ΐ, j) satisfying Γ(i)Γ(j) Π Γ(n) Φ 0 . Furthermore, there exists
some Γ{k) 2 Γ(n) such that the order on Γ(n) is that induced from
Γ{k) and

Π Γ(n) Φ 0 ~ Γ(ί)Γ(j) £ Γ(k) .

(2) For any s, t e Γ(i) and s, t e Γ(i), then

s ^ t, s ^t ==> ss ̂  ίF

holds in the order on Γ{k) for any k such that Γ(i)Γ(j) £

(3) If s, t, u, se Γ(i) for some ί, then

s f g ί f g s , s f g w r g s => t <u or % ̂  t .

(4) Suppose {β(l) ^ β(2) ̂  ^ «(Λ) ^
365
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{ί(l) ^ ί(2) ^ ^ t(n) ^ •} c Γ(j)

are nonincreasing sequences for some i and j" with

s{l)t(l) = s(2)ί(2) = . . . = s(w)ί(w) = .

Then both sequences are eventually constant.

A block semigroup will be said to be coherent if in addition to
(l)-(4), also

(5) the union of the orders in the blocks is a partial order on Γ.

Frequently, f is a po-semigroup to begin with (i.e., s < t,
8 ^t =>ss ̂  it and ss ^ it) and then the blocks are defined as
certain subsets, where the order on the blocks is that inherited from
Γ. Then the blocks induce a partial semigroup order on Γ that is
smaller than the original one.

DEFINITION 1.4. A subset of a po-set is a W-set if it is a
union of a finite number of inversely well ordered sets. If Γ is a
block semigroup, then WaΓ will be called a partial W-set if for
any k the set WΓ)Γ(k) is a Tf-set in the po-set Γ(k). Let L =
L(Γ, R) = L(Γ) be the group of all a such that supp a is a partial
W-set.

The proof of the next lemma is motivated by [1; p. 76]. Note
that condition (iii) below implies that A\J B and AB are contained
inside a finite number of the Γ(k).

LEMMA 1.5. If Γ is a block semigroup and if A and B are any
partial W-sets, then:

( i ) {(α, b) e A x B \ ab — s} is finite for each s e Γ;
(ii) AB is a partial W-set;
(iii) If Γ is also coherent and A and B are W-sets, then so

is AB.

Proof. If (i(p), j(p)) with p = 1, « , m are the finite number
of ordered pairs of indices for which Γ(i(p))Γ(j(p)) Π Γ(n) Φ 0 for
some index n, and if Γ(k) 3 Γ(n) is as in 1.3 (1), then

AB Π Γ(n) g U P Π Γ(i(p))][B n Γ(j(p))] | p = l , - . , m } S Γ(k) .

Thus if one of (i)-(iii) fails for A, B, then it already fails for some
sets of the form A Π Γ(i(p)), B Π Γ(j(p)) contained in single blocks,
i.e., we can assume AQΓ(i(p)) and B^Γ(j(p)) for some p. Further-
more, A = A Π Γ(i(p)) = A(l) U U A(r) and B = B n Γ(j(p)) =

U U B(s) where each A(i) and B(j) is a chain. Thus AB =
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U {Λ(i)B(j) I i = 1, . , r; j - 1, . . . , s}, and by 1.3 (2) each A(i)B(j)
is a totally ordered subset of Γ(k). Hence (iii) follows from (ii)
Without any loss of generality, it suffices to prove (i) and (ii) for
totally ordered sets of the form A = A(i)QΓ(i(p)), B = B(j)SΓ(j(p)).
Hence by 1.3 (2) and 1.3 (3) also AB = (AB) Π Γ(k) is totally ordered.
Conclusion (i) follows immediately from 1.3 (4); and it is interesting
to observe that the latter cancellativity condition is not needed for
the remainder of the lemma.

In order to prove (ii), the above shows that (AB) Π Γ(k) is a
finite union of chains. Consequently, it suffices to verify that any
arbitrary subset t g (AB) Γ) Γ(k) contains a maximal element. For
any subset t § AB whatever, define b(t) eB and a(t) e i by

b(t) = max {b e B | 3α e A, ab e t) ,

a(t) = max {a e A \ ab(t) e t) .

Set ί(l) = {ab e t \ ab > a(t)b(t)}. If ί(l) = 0 , then t ^ a(t)b(t) = max t.
Otherwise ab e t(l) Φ 0 implies that (1) b < b(t), (2) a > a(t), and
(3) α(ί(l))&(ί(l)) > a(t)b(t).

(1) First, ab e t implies 6 ^ b(t) by the definition of b(t). If
6 = b(t), then the definition of a(t) and ab(t) e t imply a ^ a(t)9 which
gives the contradiction that ab ^ a(t)b(t). Thus 6 < b(t).

(2) If a g a(t), then again b < b(t) implies ab ^ a(t)b(t). Thus
α > a(t). Repeat this process, i.e., set t(0) = t, define t(i + 1) =
{ab e t(i) \ ab > a(t(i))b(t(ί))} provided t(ί) Φ 0 , and get

t(0) Z) ί(l) 1) z> t(n);

a(t(O))b(t(O)) < a(t(l))b(t(l)) < . . . < α(ί(w))δ(ί(w));

α(ί(0)) < α(ί(l)) < < a(t(n)) .

By the a.c.c. in A, for some n,

0 = t(n + 1) = {αδ G11 α& > a(t(n))b(t(n))} ,

and hence ί ^ α(ί(^))δ(ί(^)) = max ί.

The next theorem and corollary are consequences of the previous
lemma.

THEOREM 1.6. Suppose that Γ is a block semigroup and R is a
ring. Then L(Γ, R) is a ring.

The group W(Γ) can only be defined if Γ is a po-set.

1.7. COROLLARY 1 TO THE THEOREM. If Γ is coherent then W(Γ, R)
is also a ring.
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1.8. COROLLARY 2 TO THE THEOREM. Suppose Γ is a block semi-
group satisfying the following,

(a) For s, t e Γ(ί); s, t e Γ(j)

s < t, s ^ t => ss < it and ss < It

holds in any block Γ(k) whenever ss, HeΓ(k) or ss, TteΓ(k).
(b) Each block is totally ordered.
(c) For any n, if i(p), j(p) with p — 1, •••, m are the finite

number of ordered pairs of indices for which

F(i(p))Γ(j(p)) Π Γ(n) Φ 0 , then the m-subsets

Γ(i(p))Γ(j(p)) are pairwise disjoint.

Then L(Γ, R) is an integral domain.

2* Applications and examples*

NOTATION 2.1. From now on R will be a fixed totally ordered
ring and Γ a coherent block semigroup. For any subset S £ Γ(k) of
a block Γ(k), max S denotes the set of maximal elements of S. If
a e L(Γ, R) = L(Γ) = L, an element s e max [supp a Π Γ(k)] will be
called a maximal component of a. Note that if each Γ(k) is totally
ordered, that then there is only one such s for each block.

DEFINITION 2.2. For a e L, define 0 <S a provided 0 <£ a(s) e R
for each maximal component s of a.

PROPOSITION 2.3. In the above order, L(Γ, R) and W{Γ, R) are
partially ordered rings.

In order to obtain examples of partially ordered rings, some
coherent block semigroups are described.

EXAMPLE 2.4. Consider the noncancellative semigroup

Γ = {2~k\k = 0, 1, 2, . . . } c [ 0 , l ]

with st = s A t = min (s, t) for s, teΓ. Take Γ in the natural order
as a single block.

2.5. Let Z = {0, ± 1 , ±2, •••} and JV = {0, 1, 2, •••} with the
usual order while N denotes the discrete order. Let Γ = N x Nx Z
under componentwise addition where (i, j, k) > (p, q, r) if and only
if i = p, j = g, but k > r. Let the blocks be Γ^i, i) = {i} x {j} x Z.
Then TΓ(Γ) c L(Γ) properly.
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2.6. Take G = Nx(N x Z) with (i, i, A;) > (j>, g, r) if either
i — P> 3 > Ψ, or if i = p, j = g, but k > r. The blocks are

i) = {(if λ &) I if k e Z) ,

and again W(G) Φ L(G).

2.7. As a set, take H — Nx Nx Z but where (i, i, /c) > (p, q, r)
provided one of the following four cases holds:

( i ) i>p;
(ii) i = p ^ 1, j > g;
(iii) i = j) ^ 1, i = g, fc > r;
(iv) i = p = 0, i = g, fc > r.

Note that (JY\{0}) x N x Z is totally ordered and dominates {0} x JV x Z.
The blocks are H(k) = {(p, g, r) | p, g e iV, r e ^ p ^ &}. Here L(£Γ) ^
TΓ(H), and W(H) is a lattice ordered ring.
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