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Let M and L be elliptic differential operators of orders
2m and 2/, respectively, with m ̂  S. The existence and
uniqueness of a solution to the abstract mixed initial and
boundary value problem

Muf(t) + Lu(t) = 0, u(0) = u0

was established for u0 given in the domain of the infinitesimal
generator of a strongly-continuous semi-group. The purpose
of this paper is to show that this semi-group is holomorphic
and then obtain differentiability results for the solution and
convergence of this solution to the initial function u0 as 110.

Let G be a bounded open domain of Rn whose boundary dG is an
(n — l)-dimensional manifold with G lying on one side of dG.
Hh = Hk{G) is the Hubert space (of equivalence classes) of functions
whose distributional derivatives through order k belong to L2(G) with
the usual inner-product and norm,

(ffff)k = Σι{\ DafD^gdx: \a\

and

ll/ll* = v/(f,f)k.

H% = HtiG) is the closure in Hk of C?(G), the space of infinitely
differentiable functions with compact support in G.

We specify the problem by means of the bilinear forms

BM(Φ, Ψ) = Σ

a n d

BL(Φ, Ψ) = Σ {(lpaD°φ, Drψ)0: \p\,\σ\£l},

defined initially for φ and ψ in C~(G). Furthermore, we require the
following:

Px: The coefficients mpσ, lpσ are bounded and measurable.
P 2 : Re BM(φ,φ)^km\\φ\\l,km>0

Re BL(φ9φ)^kι\\φ\\lkι>0

for all φ in C?(G).
P3: M is symmetric; that is mpσ = mpσ for all p, σ, (hence BM(φ, φ)

is real for all φ in Cj*).
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From the assumptions P1 and P 2 and the general theory of elliptic
operators, [1, 6, 7, 11, 12,13], there are two operators, MQ and Lo,
which are topological isomorphisms of H™ onto H~m — (H™)' and H\
onto H~ι = (Ho)' (where " ' " denotes the continuous linear dual), and
these are determined by the respective identities

BM(Φ, Ψ) =
and

BL(Φ, Ψ) = <Loφ, t >

on H™ and HI, respectively, where " < , >" denotes ^ — £^' duality,
i ^ ' being the space of distributions over G.

Since I ^ m we have a topological inclusion fl? Q Ho

m, hence, by
duality, H~m Q H~ι. Thus the mapping L^M0 is continuous from
iϊ™ into Ho and is a topological isomorphism only if I = m. Letting
Z) = L^M0(H^) = L^{H~m), we have an unbounded operator A = Jlίi"1^
on iϊom with domain D dense in Ho- In [16] we showed that A is
the infinitesimal generator of an equicontinuous semi-group of bounded
operators [6, 9, 11] on iJo

m, denoted by {S(i): t ^ 0}. We shall prove
that this semi-group is holomorphic.

We have already shown that the nonnegative real axis belongs to
the resolvent set of A and, in fact,

( 1 ) 122(λ, A) U = I (λ - AΓ \M ̂  (Re (λ)Γ1

for all real λ ^ 0, where the norm | \M defined by

on H™ is equivalent to || | |m by Pγ and P2. Actually the whole right
half of the complex plane belongs to the resolvent set of A, and (1)
is true there. This can be shown by noting that for λ = σ + iτ we
have

BM((A - X)φ, φ) = BM((A - σ)φ, φ) - iτBM{φ, φ)

and hence

ReBM((A - \)φ, φ) = ReBM((A - σ)φ, φ)

in the argument leading to (1) for λ real. See [16] for details.

2* Our goal is to improve the estimate (1) to show that the
family {XR(X, A)} is uniformly bounded in Jέ?(Ho

m) for Re (λ) > 0.
First let φ be in D; then

BM((X - A)φ, φ) = (σ + iτ)BM{φ, φ) + BL(φ, φ) .

Since M is symmetric it follows that BM(φ, φ) is real, so we obtain
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( 2 ) R e J 3 ^ ( ( λ - A)φ, φ) = σBx(φ, φ) + R e J3 L (^, φ) ̂  kt \\φ\\] ,

since σ > 0. Similarly, from

ImBM((\ - A)φ, Φ) = τ i ? ^ , 0) + lmBL{φ, φ)

we obtain the estimate

(3) \lmBM((\-A)φ,φ)\^ \τ\\φ

From (2) and (3) we conclude that either

(4)

or

(5)

for if (4) is not true then by (3)

hence

which with (2) implies (5). From (4) and (5) we obtain the estimate

Ό ) \JL>M\\AJ — Ά-)ψi ψ) I =

for all φ in D, and this in turn yields

(7)

whenever Re (λ) > 0. The calculation is as follows:

Φlir ^ I B M { ( X - A)φ, φ ) \ ^ \ ( X - A ) φ \ u I φ \ M

\(χ-A)φ\M^\τ\-%-\φ\M

implies

for all φ in D, the domain of A, so (7) follows. The estimates (1) and
(7) imply that
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when σ > 0 and, respectively, that

whenever \τ\ Φ 0, where λ = cr + iτ. By considering the two cases,
τ\ Ξ> σ and | τ | < <r, we obtain, finally,

( 8 )

for all λ in the right half of the complex plane. The estimate (8)
yields the following result.

PROPOSITION [22]. The semi-group {S(t): t ^ 0} has a holomorphie
extension into a sector of the complex plane. Furthermore, S(t) maps
H™ into D whenever t > 0, so S(t) is infinitely differentiate and
S{p)(t) = ApS(t) for any integer p ^ 1.

The significance of this result for our problem is that, for each
t > 0, S(t) maps H™ into the domain of Ap for an arbitrary integer
P ^ 1.

3* The differentiability of the semi-group yields differentiability
of the solution to the problem being considered; the latter is obtained
by means of the following.

Let Hioc denote those (equivalence classes of) functions on G which
are locally in Hk; that is,

Hΐoc = {f:feHk(K) for each compact subset K of G} .

The following result on the local regularity of solutions of elliptic
equations is well known.

THEOREM [1, 4, 5, 7, 12,13, 14]. Let p be an integer ^ — I for
which lpσ is max {1, \p\ + p) times continuously differentiate in G
whenever \p\ and \σ\ are ^l. If u belongs to H}, and if Lou is in
H?oc, then u belongs to H^p. That is, Lo is a topological isomorphism
of HI n mQ

+p onto H~ι Π H?oc.

Let k be a nonnegative integer and assume that we have

P(k): mpσ and lpσ are max {1, \p\ — m + k} times continuously

differentiate in G.
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From the above theorem it follows that MQ is a bijection of H™ Π H™+k

onto H~m Π Hf~m. Also Li1 is a bijection of H~ι Π H?~m onto
Hi D H£~m+k. Since iST* c #"Λ it follows that A~ι = -L^ιM0 maps
m n fl&+* into fβ n mι~m+k.

COROLLARY. P(2(p — l)(l — m)) implies that the domain of Ap is
contained in Hi Π H^c

+2p{l~m) for p ^ 1.

From § 2 we know that u(t) is in the domain of Ap for all t > 0
and p > 1. The corollary thus yields the following results.

THEOREM. Assume P19 P2 and P3 of § 2. Let the coefficients in
M and L satisfy P(2(p — l)(ϊ — m)) for some integer p ^ 1. Then
u(t) = S(t)uQ belongs to Hi Π H^Q

+2pil~m) for each t > 0, wAere u0 is any
element of H™.

If p is sufficiently large we obtain point wise-solutions by Sobolev's
Lemma [17]:

If m is an integer > (n/2), then H& is imbedded in Cj(G)y

j = m — [n/2] — 1, and the injection is continuous when the range
space is given the topology of uniform convergence in all derivatives
of order <Zj on compact of subsets of G.

COROLLARY. Assume the hypotheses of the above theorem hold
with m + 2p(l - m) - [n/2] - 1 = j ^ 0. Then, for t > 0, u(t) has j
continuous derivatives in G and, for each point x in G, the function
t —> u(x, t) is infinitely differentiate.

Proof. Choose f such that t > t' > 0. Since u(f!) = S(t')uQ belongs
to D(AP), the semi-group property yields

δ-'luit + δ) - u(t)] = A-'δ-'lSψ + δ - V) - S(t - tr)]Apu{tr)

for δ sufficiently small. Since Apu(tf) belongs to D — D(A), the function
to the right of A~p has a limit in H™ as δ—>0, so the function
δ~ι[u{t + δ) - u(t)] has a limit in Hm+2pιι~m)(K), where K is any com-
pact subset of G. By Sobolev's Lemma, the function

δ-+δ-tyix, t + δ) - u(x,t)]

has a limit as δ —• 0, so u(x, t) is differentiable. A repetition of this
argument shows that u(x, t) is infinitely differentiate in t without
any further assumptions on the coefficients.

All of the above results have been obtained for a solution with
initial value u0 in H^. We note further that if u0 is sufficiently
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smooth then u(t) —• u0 pointwise. (It is always true that u(t) —• u0 in

COROLLARY. Assume the hypotheses of the above corollary and
that u0 belongs to the domain of Ap. Then each u(t), t ^ 0 is a
continuous function on G, and for each point x in G, u(x, t) —•> uo(x) =
u(x, 0) as t —• 0.

Proof. This follows by an argument similar to the proof of the
preceding corollary applied to the equation

u(t) -uo = A~p(S(t) - I)(Apu0) .

We note that a sufficient condition for uQ to be in D = D(A) is that
u0 be in HI π Hn~m. Also if the initial function and all coefficients
in ikf and L are infinitely differentiate, then the solution is infinitely
differentiate.
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