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It is well known that a commutative periodic semigroup
is a semilattice of one-idempotent (or unipotent) semigroups.
Thus the characterization of commutative periodic semigroups
reduces to two subproblems: (1) the structure of commutative
periodic unipotent semigroups, and (2) the means for putting
these together in the semilattice, In this paper a complete
solution is given for problem (1), while problem (2) is solved
for the special case where each unipotent subsemigroup is
cyclic,

If S is a semigroup with zero (S = 8%, then the concepts of
nilpotence and the kernel of a homomorphism may be defined in the
usual ring-theoretic sense. Thus xeS is said to be wilpotent if
x® = 0 for some n, and the kernel of a homomorphism is the com-
plete inverse image of zero. S is said to be nil if every element of
S is nilpotent. Let T be a semigroup with zero and S be any semi-
group. Denote by T* the nonzero elements of 7. A mapping «
from T* into S is said to be a partial homomorphism if a, be T*, ab=0
implies (ab)a = (aa)(br).

It is easily seen that a commutative semigroup S is periodic and
unipotent if and only if S is the ideal extension of a periodic abelian
group G by a commutative nil semigroup 7. Furthermore, every
such extension is determined by the partial homomorphisms of T™
into G [2, Th. 4.19]. Thus our solution to (1) is obtained by deter-
mining the structure of commutative nil semigroups and using the
characterization of partial homomorphisms found in [1].

1. Commutative nil semigroups. An element # of a semigroup
S is said to be prime if x does not belong to S%. S is said to have
unique factorization if every nonzero element of S can be written
uniquely as a product of powers of primes. Of course, if S is not
commutative, we must take the order of the factors into account.
The following result is a corollary to Theorem 1 of [1].

LemMA 1. S = 8° is commutative nil if and only if there exists
a commutative wil semigroup U with unique factorization and o
homomorphism from U onto S with trivial kernel.

If S =2S8is commutative and xS we define the annihilator of
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2 as in ring theory by Ann (z) = {y: 2y = 0}. Define a relation R on
S by 0RO, and for z = 0 # y, Ry if and only if Ann (z) = Ann (y).
It is straightforward to show that R is a congruence on S with
trivial kernel (the class containing zero). Moreover, if ¢ is any con-
gruence on S with trivial kernel, then 7 < R.

THEOREM 2. Let S be a commutative nil semigroup and let
{4;:1e I} be the set of R-classes of S. Then:

(i) Any partition B;;, jed;, of some R-class A; induces a con-
gruence t; with trivial kernel on S such that the B;; are congruence
classes of ;.

(ii) Ewvery congruence on S with trivial kermel is the inter-
section of a collection of such congruences T;.

Proof. Let {B;;:jeJ;} be a partition of some R-class A;. Define
7; as follows:

(a) 070;

(b) for x,ye A;, 27y = 2,y e B;;, for some jeJ;;

(¢) forx+0=y and x,y¢A,;, xt;y—=for all zeS and je J,,
2z € B;; = yz € B;;.
7; is an equivalence relation on S. To show 7, is a congruence we
consider separately the last two cases of the definition.

First, suppose x,y¢ A; and xty. If xzc A; then xze B;; for
some j and so yze B;; and (z2)7;(y2). If xz¢ A;, then yz¢ A4;,, and
z(zw) e B;; if and only if y(zw)e B;; for all we S, so that (xz)7,(yz)
for all zeS. Seeondly, let z,yc A; and zzy. Then z,ye B;; for
some j. Now if A; = {0}, then (x2)7;(yz) follows immediately, so
assume A, = {0}. If xze A; for some ze S, then xR(xz) which implies
2R(xz") for all n, but S is nil, so xR0 and z = 0, a contradiction.
Thus for x,y e A; = {0} we have 2z, yz¢ A; for all z in S, so trivially
(x2)7,(y2), and we have proved (i).

To prove (ii), let = be any congruence on S with trivial kernel.
Then 7 < R, and 7 induces a partition B;; on each R-class A;. If
we define 7; to be the congruence induced on S by each such parti-
tion (as in the proof of (i)), then it follows directly that = = N{r;: i ¢ I}
since 7 and z; agree on A; for all <.

All commutative nil semigroups with unique factorization are
easily determined [1]. Let F be the free commutative semigroup on
X with ideal K. Then F/K is nil if and only if K contains some
positive power of each = in X. Combining Theorem 2 with Lemma
1 we obtain all commutative nil semigroups.

We remark that there are sufficient congruences in Theorem 2
to separate distinct elements of S.
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2. Semilattices of cyclic semigroups. A cyclic semigroup S
has an idempotent if and only if it is finite, and for these semigroups
the concepts of index and period are defined as in [2, p. 19]. If S is
infinite cyclic we may say it has infinite index and zero period, so that
these terms are defined for all eyclic semigroups. With that convention
in mind the following theorem characterizes semilattices of all cyelic
. semigroups, not just those with idempotents, and the solution of
problem (2) mentioned in the introduction is obtained by assuming
each cyclic semigroup is finite.

By Z,Z* and Z, we mean the integers, positive integers and
nonnegative integers respectively.

THEOREM 3. Let Y be any semilattice and {S,:ae Y} a collec-
tion of disjoint cyclic semigroups where S, = <{a,> With index N,
and period p,. For all « = Be Y, choose fla, B) € Z, such that
(1) fla,) =1;

(i1) ma #= 1= f(\, ON) + f(8, 0A) = 0.

Define g: Y X Y — Z such that:

(iii) g(a, B) = g(B, @) for all o, Be Y;

(iv) a=aB =B and fla, ab) + f(B, aB) = 0=g(@, B) = 1;

(v) az*=aB =B and fla,aB) + f(B,aB) =N, —1=g(@,B) =1
or 0;
(vi)y a#aB#pB and fla,aB) + f(B;aB) =y — 1 + kpy + S
Jor some ke Z* and 0L SZ<p—1=g,B)=—-korl—k;

(vii) g(a, B) = 0 otherwise.

Let S= U{S,|aec Y} and define multiplication in S by
(1) a’fta,]i. — a’ifé(!x,aﬁ)+if(ﬁ,aﬁ)+g(au3)paﬁ, fO?" all «a, Be Y.

Further assume that f and g are defined such that

(vili) ai(aial) = aj(aial) = ak(aial) for all @, B,ve Y, and 1,5, ke
{1, 2} such that © + 75 + k < 4.

Then S s a commutative semigroup. Conversely, every commuta-
tive semigroup which is a semilattice of cyclic semigroups may be
constructed in this manner.

Proof. Suppose S = U{S..aecY} is a commutative semigroup
which is a Y-semilattice of the S,. Denote by G, the maximal sub-
group of S,, if it exists. For a«> B in Y, define f(a, B) =exp (aas) —1
where exp (a.a;) is the least positive integer ¢ such that a,a; = ab.
Define f(a, a) =1 for all ae Y.

Now let a, 8e Y. Then a.a; = a’; for some least positive integer
t. We have ali' = a,(ast.) = alf e+ ded+t g0

t = fla, aB) + f(B, aB) + g(&, B)Pas
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for some integer g(«, B). By induction
afxafa — a;’;{g(a»aﬁ)-f-jf(ﬁ,ﬂﬁ)-i-g(a,ﬁ)i?aﬂ, for all ,i’j e Z+._

Suppose @ = a8 %= B in Y in the following three cases.

Case 1. fla, aB) + f(B, aB) = 0: Then f(«a, aB) = f(B, aB) = 0 so
1. = 1 and p,; = ¢t. Thus (ii) and (iv) are satisfied because g(«, 8) = 1.

Case 2. f(a, aB) + f(B, aB) = . — 11 Then (a.4)"e = aty'. If
a0 € Gys then ¢ =n,; —1 and g(a, 8) = 0. On the other hand if
a,0p€ G, then t = p,; + 1, — 1 so that g(a, 8) = 1. Thus (v) holds.

Case 3. fla,aB) + f(B,yaB) = e — 1 + kp,s + S where ke Z+,
0<S=<p-—1: If a.a;¢ G, then t=n,—1, S=0, and g(a, B) = — k.
If a,0,€G,y and S+ 0, then ¢t =mn,; —1+ S and g(a,B) = —k. If
a0:€G. and S =0, then t =5, — 1+ p and g(a, 8) =1 — k.

In every other situation we see al; = aff~*+/%.*® where the
exponents are in fact equal, so that g(e, 5) = 0, giving (vii).

Now that ¢g(a, B) is defined for all @, Be Y it is clear that (iii)
is satisfied, and (viii) is obvious by the associativity of S.

Conversely, suppose S = U{S,:ae Y} and the functions f and ¢
are defined satisfying (i)-(viii) with multiplication given by (1).
Multiplication is commutative by (1) and (iii). For « >8>~ in 7Y,
condition (viii) implies

fla, ) = fla, B)f(B,7) mod p, or
S, ) = fla, B)F(Bs 7).

Let a!, ai, a* be any three elements of S. Then ai(aial), ai(aial)
and af(aiaj) are powers of a,; (using (1)) with exponents which we
denote ¢, ¢, and e; respectively. If min{e, e, e} = 7,4, then the as-
sociativity follows by applying (2) to corresponding parts of the ex-
ponents e, ¢, and ¢,. So we may assume that, say, e, < i, Then
from (viii) it follows that the exponents of a.(asa,), as(a.a;) and
a(a.as), which we denote by 7, », and », respectively, are equal. If
1= 2, then dai(aa,) = as(aia;) = a,(aias) € Gas S0 that the exponents
of these expressions are equal, and in conjunction with the previous
statement we get

(3) Sla, aBy) = fla, aB)f(aB, aBy) = fla, av)flay, aBy) .
Similarly, if j = 2 or k = 2, then we have the respective equations

(4) S8, aBy) = f(B, aB)f(aB, aBy) = f(B, BNF(BY, aBy)

or

(2)
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(5) SO, aBy) = [, av)fley, aBy) = f(v, BNABY, aBy) .

Adding (2 — D)f(a, aBv) + (G — (B, aBv) + (& — L)f(v, aBY) to each
member of the equation r, = r, = r;, and using (3), (4) and (5) when
appropriate, we obtain e, = ¢, = ¢;. Therefore S is associative.

For the special case when each S, is infinite cyclic, Theorem 3 is
greatly simplified, and we state that result in the following corollary.

COROLLARY 4. Let Y be any semilattice and {S, =<a,):aec Y}
a collection of disjoint infinite cyclic semigroups indeved by Y. For
all a = B in Y choose f(a, B) e Z, such that

(i) flo,) =1

(il)  fn ON) + f(8, M0) = 0, Ao Y.

(iii) az=pBz=v=rfla") = fla BB ).
Lst S = U{S,:ae Y} and define multiplication in S by

aial = @i oD TirE.ah | a, BeY.

Then S is a commutative semigroup. Conversely, every commuta-
tive semigroup which is a semilattice of infinite cyclic semigroups s
determined in this manner.

Proof. It is easily verified that (iii) is sufficient for the equality
of the three exponents that arise from the product aiaja®. Conversely,
if S is associative and @ = 8 = v then the exponents from a.(asa,) =
aaas) will give (iii).

We remark that condition (viii) of Theorem 3 says essentially
that associativity of third degree and fourth degree terms is sufficient
to guarantee all associativity. We conclude with an example to show
that in this respect Theorem 3 is the best possible result.

Let Y be the semilattice consisting of a, 8,7 = av,aB, and
aBy = Bv. Let the cyclic semigroups indexed by Y be chosen such
that %z = 11, p,; = ps; = 1 and n,; = 2. Define fand g by fla,7) =1,
fla, aB) = fla, Br) = f(v, BY) =0, f(B, aB) =2, f(B, BY) = flaB, B) =11,
and g(a, B) = g(B,7) = g(v, aB) = —1. Conditions (i)-(vii) of Theorem
3 are satisfied. It can be shown that any term of the form xyz where
x,y, 2 are first powers of the generators is associative. In fact, any
term of the form alasa; is associative. However (a.ad)a, = a.(aia,)
so that the union of these is not a semigroup under the multiplication

@.
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