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This paper is concerned with the space of multipliers from
L?»(G) to LYG) for various pairs of indices p and ¢, where G
is an LCA group. We show that if 1<p<2<qg=co, and
G is noncompact, then there are multipliers of type (p, ¢) whose
‘Fourier transforms’ are not measures, This is an extension
of a result of Hormander, and completes work begun in two
earlier papers (this journal, 1966). In the second part, we
show that if G is infinite, many of the natural inclusion re-
lations between spaces of multipliers are proper,

In his paper [10], Hormander established a large number of im-
portant results for multipliers from L?(R") to L*R"). Subsequently,
many of the results of the early parts of Hormander’s paper have
been extended, by using quite different techniques, to the case where
R" is replaced by a general (usually noncompact) LCA group. See
Figa-Talamanca [2], Gaudry [5], [6], [7] and Figa-Talamanca and
Gaudry [3]. However, some of Hormander’s results (notably the
general form of his Theorem 1.9) have remained hitherto inaccessible
with only the techniques of the cited papers available.

The main purpose of this paper is to give a simple, all-embracing
approach which allows us to complete the process of generalization
and, moreover, provides a much simpler approach to many of the
results of [2], [3], [5], [6] and [7]. As an extra bonus, we are able
to show that the natural inclusion relations between spaces of multi-
pliers are proper whenever the underlying group is infinite. One such
result (Theorem 4.1) yields a qualitative extension of Theorem 2.4 of
Hormander’s paper.

To set the notation and terminology, G and X will denote LCA
groups in duality. For 1 < p < o, write L?(G) for the usual Lebesgue
space constructed relative to Haar measure on G. The spaces C,(G),
M(G) and M,,(G) will be the spaces of continuous functions with compact
supports, of Radon measures, and of bounded Radon measures on G
respectively. S will denote the Fourier transform of the object S
whenever it is defined.

For 1 < p =< g =< o, the space L? of multipliers of type (p, ¢) is
defined as follows. When p < <o, it is the space of continuous linear
operators T from L? to L? which commute with translations: Tz, = 7, T
for all ac G, where 7,f() = f(x — a). In case p = oo, it is further
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required that each 7 be continuous for the weak* topologies on domain
and range spaces. The norm on LZ will be denoted ||T||,,,. It can
be shown [6] that the space LZ is identifiable with a certain subspace
of the space of ‘quasimeasures’ on G (for the definition of the space
of quasimeasures, see [5]), each T'e L? being defined by convolution
with a unique quasimeasure. Further, the space L can be identified
in a natural way with the space M/ (X) of Fourier transforms of re-
presenting quasimeasures. The elements of M?(X) are quasimeasures
on X. We shall write 7 for the Fourier transform of the quasime-
asure which represents 7. The results we present in §3 can be
thought of as showing that the elements of M(X) are in general very
for from being ‘smooth’.

2. The basic construction. The methods used below center
around a construction, for general LCA groups, of analogues of the
Rudin-Shapiro polynomials. The latter objects are usually defined on
the circle group: see [11, Exercise 6, p. 33]. A construction similar
to that given below has been used by Hewitt and Ross [9] in a dif-
ferent but related context.

LeMMA 2.1. Let G and X be LCA groups in duality, with G
noncompact. Suppose that 2 is a fized open relatively compact
subset of X and that @ = @, 18 a nonzero function in C(X) with
support in 2 and pe LNG). Then if 6 > 0 is small and arbitrary,
and n is an arbitrary positive integer, there is a function @, e C,(X)
supported by 2 with the properties:

(1) P.eLYG);

(ii) [ Pulle = 25| @]|o;

(iiD) [|@ull- = CQA + )™

(iv) |Pall. = D@2 — o),

where C and D are positive constants independent of n and 6. When
G 1s discrete, 6 may be taken to be zero.

Proof. Define the sequences (®,)r, (v,)r inductively as follows.
Choose @, = ¥, = e C(X). For k > 0 define

{@k = Ppy + Y1V i

1
(1) Ve = Prer — Xo—1Vi—r

where the y,_, are characters chosen (by using the noncompactness
of G) so that

(2) {Hs’ﬁkllw = (1 + 0) max (|| Pr—i ey [[Fisll)

I Felle = (@ + 0) max (|| Prs lleoy [ Vi [1eo)
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( = - ” ’ “ % -
¢Ak 2 2 2 5 min ¢Ak 1112 k—~1|l2

14|t = 2 — 0) min (|| @[5, 1Pe-a )

It is not difficult to check that ¢, so defined does indeed satisfy the
conclusions of the lemma (observe that

1P l* 4 e = 2(0Pua [ + [P0 [) = o0 = 2, )
with C = [[®o]ly, D = [|Pg]]s-

REMARK. If G is discrete, X = 2 and @, =1, the function &,
takes the values 0, -1 and has precisely 2" points in its support.

3. Multipliers whose transforms are not measures. Hormander
{10, Th. 1.9] proved that when G = R* and 1 £ p <2 < q¢ £ o, there
are multipliers of type (p,q) whose Fourier transforms are not
measures. His proof depends on the crucial Lemma 1.2, which is in
turn heavily dependent on the fact that the underlying group is R".
Our first main result is that Hormander’s theorem continues to hold
when R" is replaced by any noncompact LCA group. This has pre-
viously been established ([3, Th. 2.5]; [7, Th. 6.6]) in the case where
» = 1 by methods which are quite different from those employed here
to establish the more general result.

Before proceeding, it will be useful to recall that if p’ denotes
the index conjugate to p, then LI = L?/ with equality of norms.
Further, in the triangle z > y,0 <2 <1, log || T|,,, is a convex func-
tion of (1/p,1/q). For these facts we refer the reader to [10, Th.
1.3] or [1, Chapter 16].

THEOREM 3.1. Let G be a noncompact LCA group, 1 < p <2 <
q = co. Then there are multipliers of type (p, @) whose Fourier trans-
Sforms are not measures.

Proof. Suppose the contrary: then if 2 is any open relatively
compact set in X, the mapping T — T|Q (the restriction of T to 2)
carries L}(G) into M(Q), the space of (bounded) Radon measures on
2. Then by the closed graph theorem, there is a constant K with

(4) |, 817121 = K| Tl

for all Te L{G). To show that the graph of the mapping is closed,
one uses for example the fact that the mapping 7— 7 is continuous
from LiG) into the space of quasimeasures on X, the latter space
being endowed with its weak* topology. For this, see [6]. By the
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duality result referred to above, we may suppose without loss of
generality that the point (1/p, 1/q) lies in the triangle bounded by the
lines =1,y =1/2,x + y =1. Join the points (1/p,1l/q) and (1/2,
1/2) by a straight line, and let it meet the line # = 1 in the point
(1,1/s). Then 2 <s. By convexity,

U T e = 1T 15l T {3

where 1/p = a/2 + 1 — a)/1, 1/g = /2 + (1 — «)/s. But it is known
[10, Ths. 1.4, 1.5] that L¥G) = L=(X) with || T |, = || T'|l. and that
Li(G) = L(@) with ||T||,s = || Tz if 1 <8< oo, in the first case
T being defined by pointwise multiplication of Fourier transforms by
the element of L=(G) with which it is identified, and in the second
case the operation being ordinary convolution. So (4) yields

(5) |, @70 = K| Tl Tlit

for all Te LYG) with Te C(X) say.

Choose @ = @, to be a function in C,(X) with support in 2,
l|l#lle. =1, and ® € L}(X). For each positive integer =, let @, be the
function defined in Lemma 2.1 with 6 = §, = 1/n. Since &, ¢ L' N L=(G),
it follows that ¢, € M (X). Define p, = @,/2+"%, Then (a) || 0.|l- < 1;
(0) [|0.]]le £ CA + 1/m)"2712»+) — (0 as » — co; and (c)

Hﬁn”z =1 - 1/2%)”121)2‘"1/2 — exp (~1/4)D2—1/2 )

as n — . Since p, is supported by the fixed relatively compact set
2, it follows from (a) and (c), Plancherel’s theorem and Holder’s in-

equality thatg [0.(0) |dy does not tend to zero as m — c. On the
17

other hand, since ||9,||.— 0 and ||0,]|. is bounded, it follows from
Holder’s inequality that ||0,||, — 0. Substituting 7 = p, in (5) and
letting n — oo, we have a contradiction.

REMARK 8.2. If 1< p=<¢=<2 (equivalently 2<p < q £ ), it
is easy to show that M7cC L{(X) (resp. L., (X)). For this see [10,
Th. 1.6].

4. Proper inclusion relations. It is known [10, §1.2] that
L = M,(®@), that LYG) = L*(X), and that if 1 < p, < p, < 2, then
Lic Liprc Lz Li. It has recently been shown ([3], [12]) that when
G is infinite, the above inclusions are all strict. In this final section,
we wish to prove results of a similar type. It should be noted that
the elementary techniques used below can be applied to establish the
results on proper inclusions contained in [3] and [12].

Young’s inequality, restated, yields the information that if 1 <
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p<g< o~ and 1/p —1/g =1~ 1/r, then L"(G)c LiG). By using
the fact that Lg = L%, for all pairs of indices (p, ¢) and applying the
Riesz convexity theorem, we see that if 1 < p, < ¢, < o0, Dy = qi, 1/Ds —
go=1-1rl1<p <p;:<p<2andl/p,—1/¢;=1-1/r(i=1,2),
then L'c Lt Lizc Lie. It is our aim to show that whenever G is
infinite, the inclusions are all strict.

Let us remark once for all that since for all pairs of indices
(p, @), Ly = L%, there is another set of results which can be obtained
immediately from those below simply by passing to the conjugate
pairs of indices.

The proof that all the inclusions are strict proceeds step by step
as follows. '

THEOREM 4.1. Let G be an infinite LCA group, 1 < p < q < oo.
and 1/p —1/gq =1 — 1/r. Then the inclusion L'(G) < LUG) is strict.

Proof. The proof divides into two cases.
(i) G isdiscrete. If LYG) = #"(G), then there is a constant K
with

(6) 1E1l, < K11Elp.q

for all trigonometric polynomials ¢ on X (closed graph theorem). We
suppose without loss of generality that the point (1/p, 1/q) lies in the
triangle bounded by the lines = 1,2 +y =1,2 =%. Define the
point (1, 1/s) as in the proof of Theorem 3.1. Then by convexity,

HEllpe < NN NE N
where 1/¢ = a/2 + (1 — a)/s, so that (6) implies
(7) IEll < K|l |12

for all trigonometric polynomials ¢ on X. Since G is discrete, we may
define the Rudin-Shapiro sequence (¢,) on X as in the lemma with
X = 2 so as tosatisfy |||« = 1, [|@ulle = 24052, [|8,]], = 2, ||, 1], =
2" each @, being a trigonometric polynomial. Substituting in (7),
we get

(8) 211./7 _S_ K2na/22a/22(1—a)n/s — KZn/qZ(xIZ .

But1/p + 1/r —1 =1/qgand p > 1. So1/qg < 1/r, and (8) is contradicted
when % — .

(ii) @G is nondiscrete; i.e., X is noncompact. As before, if we
assume that L = L"(G), we get an inequality

(9) el < K@l llli-e



88 GARTH I. GAUDRY

for all pe C,(G) say. Now manufacture a sequence (®,) of functions,
supported this time by a fixed open relatively compact subset of G,
with ||9,||. bounded, ||®,]l.— 0 and ||®,|, 4 0. Each @, is in C,(G).
For such a sequence (®,), ||®.|l. does not tend to zero if r < 2 since
if it did, Holder’s inequality would imply that ||®,|,— 0. Again, if
r =2, ||®.ll- does not tend to zero since all the functions @, are
supported by a fixed compact set and ||®,||; does not tend to zero.
In either case, we have a contradiction of (9).

COROLLARY 4.2. If G is an infinite LCA group and
1<p<g<eo,l/p—1/g=1~-1/r,
then L?xL"(G) # LYG).

Proof. Actually more than this is true. For if the space A} is
defined as in [4], then the dual of A4} is L [4, Th. 2]. However,
L?« L"(G) < Ay < LYG), and since L;(G) = LY(G), it is easy to deduce
that A;(G) = LY(G).

REMARKS 4.3. (i) When G = R", there are well-known examples
of functions which are in LZ but not in L7(G), for example @(x) =
1+ |z)~. See [10, Th. 2.4].

(ii) Corollary 4.2 is a strong form of a special case of a theorem
due to Yap [14].

The second step in the program is to show that if 1 < p, < p, <
¢ < o, =4¢q, and 1/p; —1/g; =1 — 1/r (i =0, 1), and G is infinite,
then Lji = L. We shall treat the noncompact case first, since it is
simpler.

THEOREM 4.4. Let G be an infinite (noncompact) LCA group,
1<p<q< 0,0 =0,0¢<4q,1/pi—1/¢g;=1—1/r(1=0,1). Then
L < L.

Proof. If the two spaces in question were identical, an applica-
tion of the closed graph theorem would yield the existence of a positive
constant K for which

(10) ' T o0, = KN T {lpg.q, «

We now interpolate in much the same kind of way as we did in the
proof of Theorem 4.1. Define @ by the relations

/py=al2+ (1 - a1
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Then by convexity [10, Th. 1.3] for all ¢ C,(G), we have

(12) N Pllpe = lI@NS 1P

(Recall that for 1 < s = o, L{(G) = L*(G), with equality of norms.)
(10) and (12) taken together yield the inequality

13) @Sl = Kl RNL NPT f I,

for all ¢, fe C,(G). Choose and fix @, fe C,(G). We now manufacture
two sequences (®,) and (y,) of functions much as in the proof of
Lemma 2.1, but with a few modifications. Define

Py =y =@

Py = Ppy + q/fn—l,xn_l (n=1,2,---)
t"/fn = @n—d - qﬁn—l,xn_l
where the point ,_, is chosen so that the supports of @, , and ¥, _,
are disjoint (v,_,,,, is the «, .-translate of +,,) and so that the

supports of f+@, , and (f*v,_,), , are disjoint. Then (14) leads to
the further relation

{f*% = f*Pu, + ([ *xPui)s,_,
f*q#n - f*q)%—l - (f*q/fn——l)xn__.l .

Arguing as in the proof of Lemma 2.1, we get that

NPux flley, = 240l @ £y, 5

@l = 20497 @ |; [|Palle = l|P]lo.  Then substituting @, for ¢ in
(13), we deduce

(16) 2Mul|@x fllg, = K" |9l f Iy -

Now an/2 = n/q, and 1/q, < 1/q,. So we have a contradiction when
7 — oo,

In order to be able to establish Theorem 4.4 for the case of a
general infinite compact Abelian group, we shall construct modified
Rudin-Shapiro polynomials for the group G = II7Z(r) (complete direct
product) where » is a prime, and Z(r) is as usual the cyclic group
of order ». Our construction is itself a modification of an argument
due to Daniel Rider [13]. {We are grateful to Alessandro Figa-
Talamanca for drawing our attention to Rider’s paper.}

(14

(15)

LEMMA 4.5. Let r be a prime integer, G = II7Z(r), and X =
*[I7Z(r) (weak direct product). Write %o, Y1, =+ for the characters
of G induced by the elements (0,0, --+), (1,0,0, ---), (0,1,0,0, ---),

-of X. Write { = exp 2rmifr). Then there exists a sequence (Py)y
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of trigonometric polynomials on G with the following properties.
(i) &, has precisely r* poinis in its support.
(ii) @, is supported by the subgroup of X generated by yo -+, Ls-
(iii) @, takes only the valwes 0,1, , «-+, {4
(iv) Pl < ree,

Moreover, @i = @ x5, the (r — L)th convolution power
of @, also has the properties (1)-(iv).

Proof. Observe first of all that if s is an integer, then
_ jq" (s = 0 mod r)

p—1
Fsi —
jzzo : [0 otherwise.
Therefore if ¢, +-+, ¢,_, are arbitrary complex numbers,
r—1|r—1 . 2 r—1 .
a7 S|S0 =S el
=0 | §=0 §=0

Now define the sequence {P, «--, Pi~} k = 0,1,.-- of r-tuples of poly-
nomials on G as follows. Define P{= -.-- =P/ =1. Then define P;,,
inductively as follows:

Py = 32l PE (s=0,1, -+, 7 —1).

It is easy to check that each of the functions P (s =0,1, .-+, » — 1)
has as its spectrum the subgroup of X generated by y,, ---X, and has
Fourier coefficients taking the values 0,1, --., " only. Now by
virtue of (17),

25| PP = v 2 PP

sinee [¥4:] = 1. Therefore |P; | < 7* 22 (s=0,1, -+, ~ 1Lk =
0,1, ---). Define @, = P). Then the sequence (@,) enjoys properties
(@)-(iv).

Now it is not hard to see that the (» — 1)th convolution power
@, x---x@, of ¢, also satisfles conditions (i)-(iv). For its Fourier
transform is just the complex conjugate of that of @,.

We shall need one further result, namely a simple lemma relating
the space of multipliers on a group G to the corresponding space of
multipliers on a quotient group of G.

LEMMA 4.6. Let G be a compact Abelian group with dual X.
Suppose that X, is a subgroup of X, and that 1 £ p =< q< . Let
¥ be a bounded function on X, and " the function on X which
cotncides with +» on X, and is zero off X.. Then + € MYX,) if and
only if " e MYX).
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Proof. Write G, for the annihilator of X, in G, so that the dual
of G/G, is X,. Suppose first that v e M¥(X,). If f'e L*(G), then it
is well known that the function v on X, obtained by restricting f’
to X, is the Fourier transform of a function in L*(G/G,). On the
other hand, it is easy to see that the function on X obtained by ex-
tending v so that it is 0 off X, is the Fourier transform of a function
(constant on cosets of G,) in L%G). We conclude that ' e Mi(X).
The converse is proved in a similar manner.

The compact case of Theorem 4.4 now follows.

THEOREM 4.7. Let G be an infinite compact Abelian group,
1< <<, 0=0,06<q,1/p—1g=1-1/r (=01).
Then LS L.

Proof. Lemma 4.6 shows that it suffices to prove the theorem
for a suitable quotient of G.

There are several cases to consider, depending on the group
theoretic structure of X, the dual of G.

Case (i). X is not a torsion group. Then X contains a copy
of Z, the additive group of the integers. To establish this case, it
suffices to prove the theorem when G = T, the circle group.

If Ly = Ly, it follows that L = L%!, and as in the proof of
Theorem 4.4, we deduce the inequality

(13) le* flloy, = KlI@1Z @I f oy

1for all trigonometric polynomials f and @, where 1/g, = a/2. Now
manufacture a sequence (@,) of Rudin-Shapiro polynomials with &,(k) =
+1 for 0 ZkZ2"~1,9,0k) =0 for k=2" and ||®@,|l. < 204008,
Replace both f and ¢ in (13’) by ¢,. Now |p,*®, — exp (2" — 1)iz| =
| Dgn—i_,|, where D, denotes the Dirichlet kernel of order k. Now
[1, Exercise 7.5] ||D;|l,,, ~ k" as k— oo when 1< p, < oo, (13)
yields the estimate

[| Dyn—1_,]],, < K'-1-2n0—0/2gni2 4 ]
?1

= K'2"% 4 1

= K2"n +1,

so that as n — o, 2"/7 < M2"* for some constant M. But 1/p, > 1/p,;
so we have a contradiction.

Case (ii). X is a torsion group, but contains elements of arbi-
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trarily large order. We may therefore assume that there is a sequence
X, X;, --- of cyclic subgroups of X of orders n,, n,, +-- where n, — oo,
For each %, define the positive integer s, by the condition 2% < n, <
277!, Now manufacture a trigonometric polynomial ¢, on G (as in
the proof of Lemma 2.1) with ¢, = 35% " ¢;x{ where ¢; = =1 and y,
is the generator of X,. Notice that the support of £, contains pre-
cisely 2°¢ points.

If Lg= L&, we deduce (13') as before. Now (£, ;)" is the charac-
teristic function of the subset {yi:5 =0, ---,2% — 1} of X,. If G, is
the annihilator of X, then there are precisely %, cosets of G, in G,
each having measure 1/n,. On one of these cosets, namely G, itself,

t,xt, = 2°¢. Therefore

sEpp. Yi/p!
ety 2 [ 2]
1 /ﬂ/k

- sk UP]
== 2sk+1

— 2%(1—1/17{)2—1/?;

— 2%”’12—'1/1’{ .

On the other hand, ||%l; = 2ertvl2 1 =1, and [|t,]]. < 20002,
Substituting ¢, = @ = f in (13"), we derive the inequality
9sklP1Q—1/p{ < || tp*ty ||p1

é Klzsk(l—-a-(—l)lz

= K'2sktt-1/20)

= K'2%0

(18)

since 1/¢, = «/2 and p, = q;. Now if 1/g, < 1/q, it follows that
1/p, < 1/p,. Since s, — o ag k— oo, (18) leads to a contradiction.

Case (iii). X is a group of bounded order. In this case, appeal
to a known structure theorem [8, A.25] allows us to claim that X
contains a subgroup isomorphic to the weak direct product */I7Z(r)
where r is a prime integer. It therefore suffices to prove the theorem
in the case where X = *II7Z(r). We seek, as before, to contradict
the inequality (13'). By Lemma 4.5, there exists a sequence (¢,) of
trigonometric polynomials on G, having the properties (i)-(iv); further,
the sequence of (» — 1)th powers (@,*---x*®,) also have properties
(i)-(iv). Observe now that the Fourier transform of the »th convolu-
tion power @;" is precisely the characteristic function of the group
X, generated ¥, -+, ¥,. Denote by G, the annihilator of X, in G.
Then G, has precisely r* distinct cosets in @, each of measure 1/r*.
Substituting @ = @, f = @;"* in (13'), we derive the inequality
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T = ) = || (P2
1
19 = K@i llg 121l || Pefl
) é M7,/c/2,'.ku—a)/2 — Mrk(l—alm
= My*iea

where M is a constant, since @, and @;"~' both have property (iv) of
Lemma 4.5, 1/q, = «/2, and p, = ¢,. Since 1/p, > 1/p,, (19) is contra-
dicted when k& — . The proof is now complete.

The final step in the train of argument puts Theorems 4.1, 4.4
and 4.7 together and interpolates so as to give the complete chain
of proper inclusions.

THEOREM 4.8. Let G bz any infinite LCA group, 1 < p, < p, <
<2, 0 =q,1/p;, —1/g; =1 —1/r (1 =0,1,2). Then the inclusions
Lrc Lic Lizc L are all proper.

Proof. We have already shown that L"& L{: and that L& L.
It remains to show that L& L.

If the last two spaces are equal, then the topologies on them
must be the same. (The spaces are both Banach, and [10, Th. 1.3]
shows that the embedding of Lt into L is continuous.) Since, however,
1< p < p. <P, there is an index a with 0 < @ < 1, such that

1/p, = a/p, + 1 — a)/p, ,
and
(20) T lpgey = T M50, I T

for all Te Lg, by the Riesz convexity theorem. On the other hand,
since Lg! # L, there is a sequence (7,) of elements of Li with
| Tullpge, — 0 and || T, ||,,,,, = 1; substituting in (20), we deduce that
|| Tollpye, — 0. Since || T,]l,,, =1 and the norms on the spaces Lj!
and L are equivalent, we have arrived at a contradiction.

1—a
Pgsq
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