Pacific Journal of Mathematics

ON SUBGROUPS OF PRIME POWER INDEX

LANGDON FRANK HARRIS

Vol. 35, No. 1

ON SUBGROUPS OF PRIME POWER INDEX

L. F. HARRIS

Let G be an abelian group. A set $S \subset G$ is a stellar set if $mx \in S$ implies $x, 2x, \cdots, mx \in S$. Let p^{α} be a fixed prime power. It is shown that if $S \cap p^{\alpha}G = \emptyset$, G satisfies a mild condition, and S intersects all the subgroups K of index $G: K = p^{\alpha}$, then the cardinality of S is bounded below by $p^{\alpha} + p^{\alpha-1}$. This bound is the best possible. The problem is reduced to solving a number of congruence relations

$$\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n \equiv 0 (p^{\alpha})$$

with lattice points (x_1, x_2, \dots, x_n) in a stellar set S in Euclidean n-space. This in turn leads to an interesting result on congruence classes of subgroups and points which tells something about the solution in integers of the above congruence relation.

G. K. White [3] has shown that if G is an abelian group without elements of order p^{β} , $1 < p^{\beta} < p^{\alpha}$, and S is a stellar set as above, then

$$|S| \ge p^{\alpha} + p$$
 if $\alpha \ge 2$
 $|S| \ge p + 1$ if $\alpha = 1$.

(|S| is the cardinal number of the set S.) We improve this to get

THEOREM 1. Suppose p^{α} is fixed, G is an abelian group without elements of order p^{β} , $1 < p^{\beta} < p^{\alpha}$, and S is a stellar set satisfying $S \cap p^{\alpha}G = \emptyset$ which intersects all the subgroups K of index $G: K = p^{\alpha}$. Then

$$|S| \geq p^{\alpha} + p^{\alpha-1}$$
 .

J. W. S. Cassels [1] has shown that if a stellar set S intersects all the subgroups of index $\leq m$ in an abelian group without elements of finite order than $|S| \geq m$. Our result is an improvement for $m = p^{\alpha}$.

Let g.c.d. (a_1, \dots, a_k) denote the greatest common divisor of a_1, \dots, a_k . Let V_{α} denote the Cartesian product of $n \geq 1$ copies of $Z_{p^{\alpha}}$, the residue class ring modulo p^{α} . Let A_0 denote the free abelian group of rank n. An n-tuple (in A_0 or in V_{α}) is said to be p-primitive if p does not divide at least one coefficient of the n-tuple. An integer x is said to be p-prime if g.c.d. (p, x) = 1. Let V_{α}^* denote the set

of those p-primitive elements of V_{α} whose first p-prime coefficient is 1.

If
$$x = (x_1, \dots, x_n) \in \Lambda_0$$
 and $\lambda = [\lambda_1, \dots, \lambda_n] \in V_{\alpha}^*$

the dot product is $\lambda \cdot x = \lambda_1 x_1 + \cdots + \lambda_n x_n$. Because of the one-to-one correspondence between $\lambda \in V_{\alpha}^*$ and the subgroup

$$\{x \mid x \in \Lambda_0 \text{ and } \lambda \cdot x \equiv 0 \ (p^{\alpha})\}$$

of index p^{α} in Λ_o we may identify the two. Thus we write $x \in \lambda$ to mean $\lambda \cdot x \equiv 0$ (p^{α}) .

By the same reasoning as in [3], Theorem 1 follows from

Theorem 2. Suppose that for fixed p^{α} , $n \geq 2$ every congruence $\lambda \cdot x \equiv 0$ (p^{α}) , $\lambda \in V_{\alpha}^*$, has a solution x in a stellar set S satisfying $S \cap p^{\alpha} \Lambda_0 = \varnothing$. Then $|S| \geq p^{\alpha} + p^{\alpha-1}$.

C. A. Rogers [2] has proved Theorem 2 for the case $\alpha=1$. Two n-tuples λ and μ are said to be *congruent* modulo p^r if each component of λ is congruent modulo p^r to the corresponding component of μ . If λ and μ are p-primitive elements of Λ_0 and $\lambda \not\equiv k\mu(p)$ for all p-prime k then

$$\{x \mid x \in \Lambda_0 \text{ and } \lambda \cdot x \equiv 0 \ (p^{\alpha-1}) \text{ and } \mu \cdot x \equiv 0 \ (p)\}$$

is a subgroup of index p^{α} in Λ_0 , so for $\alpha \geq 2$ there are many more subgroups of index p^{α} in Λ_0 than those we are considering in Theorem 2. In order to prove Theorem 2 we need a result on congruence classes of subgroups and points which has some interest in its own right. If y is a p-primitive element in a stellar set T in Λ_0 let

$$T(y) = \{ mx \in T | x \equiv y(p) \text{ and } m = 1, 2, 3, \cdots \}$$
.

Then T(y) is also stellar and we say T(y) is a *p-class of points* of T.

Theorem 3. Suppose that $\alpha \geq \gamma \geq 2$, $n \geq 3$ and $\lambda^0 \in V_{\alpha}^*$ are fixed. If for each λ such that $\lambda = \lambda^0(p)$ and $\lambda \in V_{\alpha}^*$ the congruence $\lambda \cdot x \equiv 0$ (p^{γ}) has a solution $x \in T$ where T is a stellar subset of Λ_0 satisfying $T \cap p^{\alpha} \Lambda_0 = \emptyset$ then either (i) all the congruences have a solution in a p-class $T(x^0)$ of points of T for some $x^0 \in T$ and

$$\mid T \mid \geq \mid T(x^{\scriptscriptstyle 0}) \mid \geq p^{\scriptscriptstyle \gamma-1}$$

or (ii)
$$|T| \ge p^{\gamma-1} + \max(|T(x)|, p^{\gamma-2}) \text{ for all } x \in T.$$

2. Lemmas. Theorem 3 is proved by induction. We need two

lemmas for the inductive step and one for the case $\gamma=2$. Assume $\alpha \geq \gamma$. Let $\mu \in V_{\alpha}^*$ and define

$$arDelta_{\scriptscriptstyle 7}(\mu) = \{\lambda \,|\, \lambda \equiv \mu\,(p^{lpha- au})\} = \{\mu \,+\, \lambda\,\,p^{lpha- au}\,|\, 1 \leqq \lambda_i \leqq p^{\scriptscriptstyle 7}\} \subset V_{\,lpha}^{\,st}\,.$$

Then

$$\Lambda_{r}(\mu) \cap \Lambda_{r-1}(\nu) = \emptyset \quad \text{if } \mu \not\equiv \nu \ (p^{\alpha-r})$$

$$\Lambda_{r}(\mu) \supset \Lambda_{r-1}(\nu) \qquad \qquad \text{if } \mu \equiv \nu \ (p^{\alpha-r}) .$$

Thus

(*)
$$\Lambda_{\gamma}(\mu) = \bigcup \{\Lambda_{\gamma-1}(\mu + \mu' p^{\alpha-\gamma}) | 1 \leq \mu'_i \leq p \}.$$

Since each $\Lambda_r(\mu)$ is a set of $\lambda \in V_\alpha^*$ and each λ can be regarded as a set of $x \in \Lambda_0$, the x are in some sense "second level" elements of $\Lambda_r(\mu)$. We write $x * \Lambda_r(\mu)$ if $x \in \lambda$ for some $\lambda \in \Lambda_r(\mu)$.

Suppose C is a family of $\Lambda_r(\mu)$. We define ordered pairs

$$A(C, x) = \{ arLambda_{r}(\mu) \mid arLambda_{r}(\mu) \in C \ ext{and} \ x st arLambda_{r}(\mu) \}$$
 $B(arLambda_{r}(\mu), x) = \{ \lambda \mid \lambda \in arLambda_{r}(\mu) \ ext{and} \ x \in \lambda \}$
 $B(arLambda_{r}(\mu), T) = igcup_{x \in T} B(arLambda_{r}(\mu), x) \ .$

We say T covers $\Lambda_r(\mu)$ if and only if $B(\Lambda_r(\mu), T) = \Lambda_r(\mu)$.

We wish to cover $\Lambda_{\gamma}(\lambda^{\circ})$. Without loss generality take $\lambda^{\circ} = [1, 0, \dots, 0]$ and let $\Lambda_{\gamma} = \Lambda_{\gamma}(\lambda^{\circ})$. Now $x * \Lambda_{\gamma}$ if and only if

$$\lambda \cdot x = (\lambda^{\circ} + p^{\alpha - \gamma} \lambda) \cdot x \equiv 0 (p^{\alpha})$$

for some

$$\lambda^{\circ} + p^{\alpha-\gamma} \lambda = [1, \lambda_2 p^{\alpha-\gamma}, \dots, \lambda_n p^{\alpha-\gamma}] \in \Lambda_r$$
.

This implies

$$\lambda^{\circ} \cdot x \equiv w_{\scriptscriptstyle 1} \ p^{lpha-\gamma} \left(p^{lpha}
ight) \qquad ext{for some} \ w_{\scriptscriptstyle 1} \ + \lambda \cdot x \equiv 0 \ (p^{\gamma}) \ w_{\scriptscriptstyle 1} + \sum\limits_{\scriptscriptstyle 2}^{\scriptscriptstyle n} \lambda_i \, x_i \equiv 0 \ (p^{\gamma}) \ .$$

Thus T covers Λ_{τ} if and only if the congruence (1) is satisfied for all $[1, \lambda_2, \dots, \lambda_n]$ by points $(p^{\alpha-\tau} w_1, x_2, \dots, x_n) \in T$. By (*) we may write (1) as

(2)
$$w_1 + \sum_{i=1}^{n} (\mu'_i + \nu_i p) x_i \equiv 0 (p^r)$$

and T covers $\Lambda_{\gamma-1}(\lambda^{\circ} + \mu' p^{\alpha-\gamma})$ if and only if (2) is satisfied for all ν_i . To simplify notation let $\Lambda(\mu') = \Lambda_{\gamma-1}(\lambda^{\circ} + \mu' p^{\alpha-\gamma})$.

Since
$$\lambda^{\circ} = [1, 0, \dots, 0]$$
 implies $x_1^{\circ} \equiv 0$ $(p), (x_k^{\circ}, p) = 1$

for some k>1, without loss of generality take k=n, $x_n^0=1$ and

a suitable coordinate transformation will take x^0 into $(0, \dots, 0, 1)$ but leave $\lambda^{\circ} = [1, 0, \dots, 0]$ fixed. Thus we shall work with

$$T_* = T(0, \dots, 0, 1) = T(x^0)$$

 $\Lambda_r = \Lambda_r([1, 0, \dots, 0])$

but our results hold for all T(x) and $\Lambda_{r}(\mu)$. Now $x \in T_{*}$ and $x * \Lambda_{r}$ implies

(3)
$$w_1 + p \sum_{i=1}^{n-1} (\mu'_i + \nu_i p) + \mu'_n + \nu_n p \equiv 0 (p^{\gamma})$$

so $x \in T_*$ and $x * \Lambda(\mu')$ if and only if

$$(4) w_1 + \mu'_n \equiv 0 (p) .$$

Because of (4) we can define subsets T_c of T_* which are in $\Lambda(\mu')$. At the same time we define families of congruence classes $\Lambda(\mu') \subset \Lambda_r$ which we shall need for the lemmas. In the following $c = 1, \dots, p$.

$$T_{o} = \{ mx \in T_{*} \mid x = (cp^{\alpha-\gamma} + x_{1} \ p^{\alpha-\gamma+1}, \ x_{2} \ p, \ \cdots, x_{n-1} \ p, 1), \\ x_{i} \mod p^{\gamma-1}, \ m = 1, 2, \cdots \}$$

$$M_{o} = \{ \Lambda(\mu') \subset \Lambda_{r} \mid \mu'_{n} + c \equiv 0 \ (p) \}$$

$$Q' = \{ M_{o} \mid B(\Lambda(\mu'), T_{*}) = \Lambda(\mu') \ \text{for some} \ \Lambda(\mu') \in M_{o} \}$$

$$R' = \{ M_{o} \mid M_{o} \notin Q' \}$$

$$Q = \bigcup \{ \Lambda(\mu') \in M_{o} \mid M_{o} \in Q' \}$$

$$R = \bigcup \{ \Lambda(\mu') \in M_{o} \mid M_{o} \in R' \}$$

 $P = Q \cup R = \{ \varLambda(\mu') \subset \varLambda_{\tau} \}$ $T_{\sigma} \subset \varLambda_{0}; \ M_{\sigma} \ \text{is a collection of classes} \ \varLambda(\mu'), \ \text{etc.}$

Notice that if $\Lambda(\mu') \in R$ then $B(\Lambda(\mu'), T_*) \neq \Lambda(\mu')$, but the converse is not necessarily true. Also T_* is the disjoint union

$$T_* = \bigcup_{c=1}^P T_c$$

and P is the disjoint union of Q and R. Hereafter suppose

$$\mid T_* \mid < p^{\scriptscriptstyle \gamma}$$

and

$$(0, 0, \dots, 0) \notin T_*$$
.

LEMMA 1. (a) If $\mu'_n \equiv -c$ (p) then $B(\Lambda(\mu'), T_c) = \emptyset$.

(b) If T_* covers a $\Lambda(\mu')$ then

$$|T_c| \geq p^{\gamma-1}$$
 and $c + \mu'_n \equiv 0$ (p).

(c) If the $\Lambda(\mu')$ covered are from $\[\] distinct \ M_c, \ (0 \le \[\] \[\] = |Q'| < p)$ then

$$\mid T_* \mid \; \geq \; \swarrow p^{\gamma-1} \ \mid Q \mid \; = \; \swarrow p^{n-2}$$

and

$$|R| = p^{n-1} - \angle p^{n-2}.$$

Proof. (a) follows from (4).

(b) Define a set V_c , not stellar, by

$$V_c = \{p^{\beta}y \in T_c \mid \text{if } p^b y \in T_c \text{ then } b \leq \beta, y \text{ p-primitive} \}$$
.

Then

$$\mid T_{\it c} \mid \; \geq \sum_{p^{eta}y \, \in \, V_{\it c}} \; p^{eta} \; ext{and} \; B\left(arLambda(\mu'), \; T_{\it c}
ight) = B(arLambda(\mu'), \; V_{\it c})$$
 .

Let

$$a=p^{(\gamma-1)(n-2)}=|B(\varLambda(\mu'),x| ext{ for any } p ext{-primitive } x*\varLambda(\mu')$$
 .

$$egin{aligned} \mid T_c \mid & \geq \sum \limits_{p^{eta_{oldsymbol{y}}} \in V_o} p^{eta} = \sum \limits_{p^{eta_{oldsymbol{y}}} \in V_o} rac{\mid B(arLambda(\mu'), \ p^{eta} \ y) \mid}{a} = rac{1}{a} \mid B(arLambda(\mu'), \ V_c) \mid \ & = rac{1}{a} \mid B(arLambda(\mu'), \ T_c) \mid = rac{1}{a} \mid arLambda(\mu') \mid = p^{\gamma-1} \ . \end{aligned}$$

(c) By (a) and (b),
$$\mid T_* \mid \geq \ arrho_{p^{n-1}}$$
. Since $\mid M_c \mid = p^{n-2}$,
$$\mid Q \mid = \ arrho_{p^{n-2}} \ .$$

Because P is the disjoint union of Q and R, and

$$|P| = p^{n-1}$$

we have

$$|R| = p^{n-1} - \angle p^{n-2}$$
.

This completes the proof of Lemma 1.

Of course
$$T \setminus T_*$$
 denotes $\{x \in T \mid x \notin T_*\}$.

LEMMA 2. (a) $|A(P,x)| = p^{n-2}$ for any $x \in T$. If $x \in T \setminus T_*$, $y \in T_*$ then

- (b) $|A(P, x) \cap A(P, y)| = p^{n-3}$ and
- (c) the number of $\Lambda(\mu') \in R$ with $x * \Lambda(\mu')$ is

(6)
$$|A(R, x)| = p^{n-2} - \angle p^{n-3}, \angle = |Q'|$$
.

Proof. (a) If $x \in T$ and $x * \Lambda_r$ then $(x_2, \dots, x_n, p) = 1$ implies there are p^{n-2} choices for μ'_2, \dots, μ'_n .

- (b) follows from the fact that $x \not\equiv y$ (p) and Λ_r is fixed.
- (c) If $y \in T_*$ then $y \in T_c$ for a unique c. By Lemma 1(a) $A(P, y) = A(M_c, y) \subset M_c$ and counting shows $A(P, y) = M_c$. Now it is easy to

see that $|A(Q,x)| = \angle p^{n-3}$. Since P is the disjoint union of Q and R, $|A(R,x)| = |A(P,x)| - |A(Q,x)| = p^{n-2} - \angle p^{n-3}$. This completes the proof of Lemma 2.

In Theorem 3 if $\gamma=2, \lambda^{\circ}=[1,0,\cdots,0]$, then $x\in T$ must satisfy the congruence

$$x_1 + p \sum_{i=1}^{n} \lambda_i x_i \equiv 0 \ (p^2)$$

for some $\lambda_2, \dots, \lambda_n$. Thus

$$x_1 \equiv 0 \ (p), \ x_1 = p w_1$$
 for some w_1 ,

and

$$w_{\scriptscriptstyle 1} + \sum_{\scriptscriptstyle 2}^{\scriptscriptstyle n} \lambda_i x_i \equiv 0 \ (p)$$

so $(x_2, \dots, x_n, p) = 1$ and $x * \Lambda_1$.

Lemma 3. Suppose $n \ge 3$ and for each $\lambda = [1, \lambda_2, \dots, \lambda_n]$ the congruence

$$w_{\scriptscriptstyle 1} + \sum_{\scriptscriptstyle 2}^{\scriptscriptstyle n} \lambda_i x_i \equiv 0 \ (p)$$

has a solution $x \in T$, where T is a stellar set of points, such that if $x \in T$ and for some integer m

$$x = m(w_1, x_2, \dots, x_n)$$
 then g.c.d. $(x_2, \dots, x_n, p) = 1$.

Denote $\widetilde{x} = (x_2, \dots, x_n)$.

Let

 $T(y_{\scriptscriptstyle 0})=\{my\in T\,|\,\widetilde{y}\equiv\widetilde{y}_{\scriptscriptstyle 0}(p),\,\,m=1,2,3,\,\cdots\}\,\,\, for\,\, some\,\,\, p ext{-primitive}$ $y_{\scriptscriptstyle 0}.$

 $\begin{array}{ll} \textit{Then either} & (\text{ i }) & \mid T \mid \geq \mid T(y_{\scriptscriptstyle 0}) \mid \geq p \textit{ for some } y_{\scriptscriptstyle 0} \in T \\ & \textit{or} & (\text{ ii }) & \mid T \mid \geq p + \max \left(\mid T(y) \mid, 1 \right) \textit{ for all } y \in T. \end{array}$

Proof. If $|T(y_0)| \ge p$ for some $y_0 \in T$ we are done. Assume |T(y)| < p for all $y \in T$. Then T is a p-primitive set since $p^{\beta}y \in T$ implies

$$y, 2y, \cdots, p^{\beta}y \in T(y)$$
.

 $T \neq \emptyset$ implies $T(y_0) \neq 0$ for some $y_0 \in T$. Some calculations show, if $y \in T \setminus T(y_0)$, then

- (a) $|\Lambda_1 \setminus B(\Lambda_1, T(y_0))| = p^{n-1} |T(y_0)| p^{n-2}$,
- (b) $|B(\Lambda_1, y) \setminus \{B(\Lambda_1, y) \cap B(\Lambda_1, T(y_0))\}| = p^{n-2} |T(y_0)| p^{n-3}$.

If $y^j = (y^j_1, \dots, y^j_n), j = 1, 2$ are two distinct points in $T \setminus T(y_0)$ then

$$|B(arLambda_{\scriptscriptstyle 1},y^{\scriptscriptstyle 1})\cap B(arLambda_{\scriptscriptstyle 1},y^{\scriptscriptstyle 2})|=egin{cases} 0 & ext{if } y^{\scriptscriptstyle 1}_i=y^{\scriptscriptstyle 2}_i & ext{for all } i>1 \ p^{n-3} & ext{otherwise} \end{cases}.$$

Substituting the above, together with (a) and (b), in

$$\sum_{y \in T \setminus T(y_0)} |B(arLambda_1,y) ackslash \{B(arLambda_1,y) \cap B(arLambda_1,T(y_0))\}| = \sum_{arLambda \in B(\Lambda_1,T(y_0))} 1$$

gives

$$|T| - |T(y_0)| \ge p$$
.

3. Proof of Theorem 3. We prove Theorem 3 by induction on γ . The case $\gamma=2$ was settled in Lemma 3 where we noted satisfying the congruences (mod p^2) was equivalent to covering Λ_1 . Similarly satisfying the congruences (mod $p^{\gamma+1}$) is equivalent to covering Λ_{γ} . The $\lambda \in \Lambda_1$ play a similar role to the $\Lambda_{\gamma-1}(\mu') \subset \Lambda_{\gamma}$; (a) and (b) in Lemma 3 play a similar role to (5) and (6) in Theorem 3.

We assume Theorem 3 true for some $\gamma \geq 2$ and will show it holds for $\gamma + 1$. Thus we will be concerned with covering Λ_{γ} , and shall consider it in terms of the $\Lambda_{\gamma-1}(\mu') \subset \Lambda_{\gamma}$. We must distinguish two cases:

Case 1. $p^{\gamma} > |T_*| \ge p^{\gamma-1}$.

Recall the families Q', R', Q, R and P defined in § 2. $\Lambda(\mu') \in R$ implies

$$B(\Lambda(\mu'), T_*) \neq \Lambda(\mu')$$

and the induction implies the number of points of T in $\Lambda(\mu')$ is

$$|T| \ge p^{\gamma-1} + \max(|T_*|, p^{\gamma-2})$$
 for each $\Lambda(\mu') \in T$.

In other words, at least p^{r-1} points of $T \setminus T_*$ are in each $\Lambda(\mu') \in R$. Combining

$$\sum_{x \in T \setminus T_*} |A(R, x)| = \sum_{\Lambda(\mu') \in R} |\{x \in T \setminus T_* | x * \Lambda(\mu')\}|$$

with (5) and (6) gives

$$\mid T \mid - \mid T_* \mid \geq p^{r}$$
 .

Case 2. For all $x \in T$, $p^{\gamma-1} > |T(x)|$.

By induction, the cardinality of the subset of points of T that covers $\Lambda(\mu') \in P$ is greater than or equal to $p^{r-1} + p^{r-2}$.

Notice that $|P| = p^{n-1}$.

Lemma 2 (a) gives $|A(P, x)| = p^{n-2}$.

We have

$$\sum_{x \in T} |A(P, x)| = \sum_{\Lambda(\mu') \in P} |\{x \in T \mid x * \Lambda(\mu')\}|$$

so that

$$\mid T \mid \; \geq p^{\gamma} + p^{\gamma-1}$$
 .

4. Proof of Theorems 1 and 2. As remarked earlier, it is sufficient to prove Theorem 2 in order to conclude Theorem 1. Thus we shall prove only Theorem 2. By [2] and [3] we may assume $n \ge 3$ and $\alpha \ge 2$.

We apply Theorem 3 with $\alpha = \gamma \ge 2$. Thus we have a result about covering the $\Lambda_{\alpha-1}(\mu) \subset V_{\alpha}^*$.

Let $N=\{A_{\alpha-1}(\mu)\,|\,A_{\alpha-1}(\mu)\subset V_{\alpha}^*\}$. The number of $A_{\alpha-1}(\mu)\subset V_{\alpha}^*$ is $|\,N\,|\,=\,1\,+\,p\,+\,\cdots\,+\,p^{n-1}$ and $|\,A\,(N,\,x)\,|\,=\,1\,+\,p\,+\,\cdots\,+\,p^{n-2}$ for any $x\in S$.

We consider two cases corresponding to those in Theorem 3.

Case 1.
$$|T_*| \ge p^{\alpha-1}$$
.

Let
$$M = \{ \Lambda_{\alpha-1}(\mu) \in N \mid B(\Lambda_{\alpha-1}(\mu), T_*) = \emptyset \}$$
.

Then

$$|M| = |N| - |A(N, T_*)| = p^{n-1}$$
.

By Theorem 3 each $\Lambda_{\alpha-1}(\mu) \in M$ will need at least $p^{\alpha-1}$ points of $S \setminus T_*$ to be covered by S.

If $x \in S \setminus T_*$, $y \in T_*$ then

$$|A(N, x) \cap A(N, y)| = 1 + p + \cdots + p^{n-3}$$
.

Thus

$$|A(M,x)| = |A(N,x)| - |A(N,x) \cap A(N,y)| = p^{n-2}$$
.

Now

$$\sum_{x \in S \setminus T_*} |A(M,x)| = \sum_{\Lambda_{lpha-1}(\mu) \in M} |\{x \in S \setminus T_* \mid x * \varLambda_{lpha-1}(\mu)\}|$$

so by Theorem 3

$$(\,|\,S\,|\,-\,|\,\,T_*\,|\,)\,p^{{\scriptscriptstyle n}-{\scriptscriptstyle 2}} \geqq p^{{\scriptscriptstyle n}-{\scriptscriptstyle 1}}\,p^{{\scriptscriptstyle \alpha}-{\scriptscriptstyle 1}}$$

and the result follows.

Case 2. For all $x \in S$, $p^{\alpha-1} > |T(x)|$.

By Theorem 3, to cover each $\Lambda_{\alpha-1}(\mu) \in N$ will require at least $p^{\alpha-1}+p^{\alpha-2}$ points of S. We have

$$\sum_{x \in S} |A(N, x)| = \sum_{\Lambda_{\alpha-1}(\mu) \in N} |\{x \in S \mid x * \Lambda_{\alpha-1}(\mu)\}|$$
 .

 $|S|(1+p+\cdots+p^{n-2}) \ge (1+p+\cdots+p^{n-1})(p^{\alpha-1}+p^{\alpha-2})$ and the theorem follows.

5. Bounds. Our bounds in Theorem 2, 3 and Lemma 1 are the best possible in the sense that we can exhibit sets of minimum cardinality which satisfy the conditions. For Theorem 2 let

$$S = \{(x, 1, 0, \dots, 0) | 1 \le x \le p^{\alpha}\} \cup \{(1, px, 0 \dots, 0) | 1 \le x \le p^{\alpha-1}\}$$
.

Then

$$|S| = p^{\alpha} + p^{\alpha-1}$$

and S satisfies all the congruences. Notice that S is composed of p+1 disjoint sets T(x), each of cardinality $p^{\alpha-1}$. We expect this because of the strict inequality in Case 2 of the proof of Theorem 2, as compared with the inequality in Case 1.

For Theorem 3 we exhibit a $T(x^{\circ})$ of cardinality $p^{\gamma-1}$ and a T of cardinality $p^{\gamma-1} + p^{\gamma-2}$ containing no T(x) of cardinality greater than $p^{\gamma-2}$. Without loss of generality, let $\lambda^{\circ} = [1, 0, \dots, 0]$.

$$egin{aligned} T(x^\circ) &= \{(xp,\,0,\,\cdots,\,0,\,1)\,|\,1 \leqq x \leqq p^{\gamma-1}\} \ &T &= \{(0,\,\cdots,\,0,\,xp\,+\,c,\,1)\,|\,1 \leqq x \leqq p^{\gamma-2},\,1 \leqq c \leqq p\} \ &\{(0,\,\cdots,\,0,\,1,\,xp)\,|\,1 \leqq x \leqq p^{\gamma-2}\} \ . \end{aligned}$$

All the congruences of Theorem 3 are clearly satisfied by each of these sets.

Finally for Lemma 1 let c be fixed and

$$T_c = \{(p^{\alpha-\gamma_c} + p^{\alpha-y+1}x, 0, \dots, 0, 1) | 1 \le x \le p^{\gamma-1} \}$$
.

Then

$$\mid T_c \mid = p^{\gamma-1}$$

and

$$B\left(\varLambda(\mu'),\; T_c \right) = \varLambda(\mu') \;\; {
m for \;\; all} \;\; \varLambda\left(\mu'\right) \in M_c$$
 .

The author wishes to thank Dr. G. K. White for his advice and encouragement in the preparation of this paper.

BIBLIOGRAPHY

- 1. J. W. S. Cassels, On the subgroups of infinite abelian groups, J. London, Math. Soc. 33 (1958), 281-4.
- 2. C. A. Rogers, The number of lattice points in a star body, J. London, Math. Soc. 26 (1951) 307-310.

3. G. K. White, On subgroups of fixed index, Pacific J. Math. $\bf 28$ (1969), 225–232.

Received June 16, 1969.

University of British Columbia Vancouver

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON Stanford University

Stanford, California 94305

RICHARD PIERCE University of Washington Seattle, Washington 98105 J. DUGUNDJI

Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS

University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. Wolf

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION

TRW SYSTEMS

NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics

Vol. 35, No. 1 September, 1970

B. D. Arendt and C. J. Stuth, <i>On the structure of commutative periodic</i>	
semigroups	1
B. D. Arendt and C. J. Stuth, <i>On partial homomorphisms of semigroups</i>	7
Leonard Asimow, Extensions of continuous affine functions	11
Claude Elias Billigheimer, Regular boundary problems for a five-term	
recurrence relation	23
Edwin Ogilvie Buchman and F. A. Valentine, A characterization of the parallelepiped in E^n	53
Victor P. Camillo, <i>A note on commutative injective rings</i>	59
Larry Jean Cummings, <i>Decomposable symmetric tensors</i>	65
J. E. H. Elliott, On matrices with a restricted number of diagonal values	79
Garth Ian Gaudry, Bad behavior and inclusion results for multipliers of type	
(p,q)	83
Frances F. Gulick, <i>Derivations and actions</i>	95
Langdon Frank Harris, On subgroups of prime power index	117
Jutta Hausen, The hypo residuum of the automorphism group of an abelian	
<i>p-group</i>	127
R. Hrycay, Noncontinuous multifuctions	141
A. Jeanne LaDuke, On a certain generalization of p spaces	155
Marion-Josephine Lim, Rank preservers of skew-symmetric matrices	169
John Hathway Lindsey, II, On a six dimensional projective representation of	
the Hall-Janko group	175
Roger McCann, Transversally perturbed planar dynamical systems	187
Theodore Windle Palmer, <i>Real C*-algebras</i>	195
Don David Porter, Symplectic bordism, Stiefel-Whitney numbers, and a	
Novikov resolution	205
Tilak Raj Prabhakar, On a set of polynomials suggested by Laguerre	
polynomials	213
B. L. S. Prakasa Rao, <i>Infinitely divisible characteristic functionals on locally</i>	
convex topological vector spaces	221
John Robert Reay, Caratheodory theorems in convex product structures	227
Allan M. Sinclair, Eigenvalues in the boundary of the numerical range	231
David R. Stone, Torsion-free and divisible modules over matrix rings	235
William Jennings Wickless, A characterization of the nil radical of a	
rino	255