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Let G be an abelian group. A set Sc G is a stellar set
if mx < S implies x, 2z, .-+, mx€S. Let p* be a fixed prime
power, It is shown that if SN p*G= @, G satisfies a mild
condition, and S intersects all the subgroups K of index
G:K = p%, then the cardinality of S is bounded below by
p* + p*~t. This bound is the best possible. The problem is
reduced to solving a number of congruence relations

M+ Bt e+ = 0(p%)

with lattice points (xi, 22, -++,%,) in a stellar set S in Eu-
clidean n-space. This in turn leads to an interesting result
on congruence classes of subgroups and points which tells
something about the solution in integers of the above con-
gruence relation.

G. K. White [3] has shown that if G is an abelian group with-
out elements of order p°, 1 < p? < p%, and S is a stellar set as above,
then

[S|=p*+» if a>2
IS|=zp+1 ifa=1.

(| S| is the cardinal number of the set S.)
‘We improve this to get

THEOREM 1. Suppose p* is fized, G is an abelian group with-
out elements of order p°,1 < p% < p*, and S is a stellar set satisfying
SN p*G=@ which intersects all the subgroups K of index
G: K = p*. Then

S|z p* + .

J. W. 8. Cassels [1] has shown that if a stellar set S intersects all
the subgroups of index =< m in an abelian group without elements
of finite order than |S|=m. Our result is an improvement for
m = p°*.

Let g.c.d. (a, --+,a;) denote the greatest common divisor of
@, +++, a;. Let V, denote the Cartesian product of # =1 copies of
Z,«, the residue class ring modulo p*. Let 4, denote the free abelian
group of rank n. An n-tuple (in 4, or in V) is said to be p-primitive
if p does not divide at least one coefficient of the n-tuple. An integer
x 1s said to be p-prime if g.ce.d. (p,x) = 1. Let V} denote the set
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of those p-primitive elements of V, whose first p-prime coefficient is 1.
If = (xl? "',ZU”)GAO and )\ = D\’L’ "'37‘%]6 V:

the dot product is N -2 = x\®, + -+ + 2,2,. DBecause of the one-to-
one correspondence between v e V} and the subgroup

{w|wed, and n - 2 = 0 (p%)}

of index p* in A, we may identify the two. Thus we write xe X to
mean X - 2 = 0 (p%).
By the same reasoning as in [3], Theorem 1 follows from

THEOREM 2. Suppose that for fixed p* n = 2 every congruence
Ao =0(p9, ve VE has a solution « im o stellar set S satisfying
SN pd=@. Then |S|=p*+ p*.

C. A. Rogers [2] has proved Theorem 2 for the case « =1. Two
n-tuples N and g are said to be congruent modulo p” if each com-
ponent of A is congruent modulo " to the corresponding component
of #. If » and g are p-primitive elements of 4, and ) %= ky(p) for
all p-prime % then

{vleedyand v -2 =0(p") and ¢ -2z =0(p)}

is a subgroup of index ¢ in 4, so for « = 2 there are many more
subgroups of index p* in 4, than those we are considering in
Theorem 2. In order to prove Theorem 2 we need a result on con-
gruence classes of subgroups and points which has some interest in
its own right. If y is a p-primitive element in a stellar set T in 4,
let

Ty ={mxeT|xc=y{p and m=1,2,8, ...},
Then T (y) is also stellar and we say T(y) is a p-class of points of
T.

THEOREM 3. Suppose that « = v =2, n=3 and \Nec VI are
fized. If for each N such that N = Ap) and ne V} the congruence
ANea=0(p) has a solution xe T where T is a stellar subset of 4,
satisfying TN p*d, = @ then either (1) all the congruences have a
solution in a p-class T (x°) of points of T for some x°¢ T and

IT|z|T@) =z

or (i) |T| = pt -+ max (| T (x)|, p~?) for all xeT.

2. Lemmas. Theorem 3 is proved by induction. We need two
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lemmas for the inductive step and one for the case v = 2. Assume
a=v. Let pe V} and define

4 ={MrA=p@ ) ={g+rpT 1= S Vi

Then A4,() N 4(v) = @ if p = v (™)

A (p) D A,y (V) if p=v@).
Thus
*) A,(p) = Uldy(pe + 2/ p7) |1 S i < o}

Since each /4,(y) is a set of xe V¥ and each M can be regarded
as a set of xe 4, the x are in some sense “second level” elements
of 4,(¢r). We write o = 4,(¢2) if x e X for some \ € 4,(x).

Suppose C is a family of 4,(¢). We define ordered pairs

A(C, ©) = {4() | 4(¢) € C and © = 4,(1)}
B(4,(12), ) = {M | M e 4(p) and w e}
B(4,(19, T) = U B(d(p), o) -
We say T covers A,(y) if and only if B(4.(), T) = 4.(p).
We wish to cover 4,(\°). Without loss generality take
A =1[1,0,---,0] and let 4, = 4,(\°). Now 2 « 4, if and only if
Aoz =0+ p ) -2 =0(p%)
for some
A+ TN = (L N Py e e, N, DT € 4, .
This implies
A - = w, P (p%) for some w,

w, + -2 =0(p)

1) w, + 3w = 0(p) -
Thus T covers 4, if and only if the congruence (1) is satisfied for all
[1, x + -+, N,] by points (p*7 w,, ., «+-,2,) € T. By (*) we may write
1) as

@) w, + 3 (¢ + vip) @ = 0 ()

and T covers A,_,(A° + g p*7) if and only if (2) is satisfied for all
y;. To simplify notation let A(y') = 4,_,(\° + g/ p*).

Since \° = [1,0, ---, 0] implies 2! = 0 (p), (%, p) =1

for some k >1, without loss of generality take L =mn, 2% =1 and



120 L. F. HARRIS

a suitable coordinate transformation will take «° into (0, -+, 0, 1) but
leave \° =[1,0, «.., 0] fixed. Thus we shall work with

Te=T(@,--+,0,1) = T(x"
/17 = /ly([l, 0y -+, O])

but our results hold for all T'(x) and 4,(#). Now xze T, and x = 4,
implies

@) w1+p.§(y2+vip)+/z;+v,,p50(p’)
so xc T, and o * A(y') if and only if

“) w, + o, =0(p) .

Because of (4) we can define subsets T, of T, which are in
A(y). At the same time we define families of congruence classes
A(p')c 4, which we shall need for the lemmas. In the following
c = 1, ree, D

T,={moeTy|x = (ep*7 + 2, 07, 2,0, +++, %y Dy 1),

x; mod p—t, m=1,2, ...}

M, = {A(¢)) c 4| ¢ + ¢ = 0 (p)}

@ = (M| BA(), T.) = A() for some A()e M)

R ={M,|M¢Q}

Q= U{d(¢)e M, |MecQ}

R = u{4(¢)e M.| M. e R}

P =QUR = {A(¢) C 4;}

T.c 4,; M, is a collection of classes A(y'), etc.
Notice that if A(¢')e R then B(A(y'), T.)# A(¢'), but the converse
is not necessarily true. 'Also T, is the disjoint union

P
T* = L_J Tc
and P is the disjoint union of @ and R. Hereafter suppose

| Ty <2
and
(0101 "'90)€ T*'

LemMMA 1. (@) If p, = -¢(p) then B(A(Y), T,) = @.
(b) If T, covers a A(y) then
|T,|=p " and ¢ + ¢, =0(p) .

(c) If the A(') covered are from < distinct M,, (0 < s=|Q'| < p)
then
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[ Ty|lz 2 p—
‘Q’ :/pn—2
and
(®) [R|=p" = s pt.

Proof. (a) follows from (4).
(b) Define a set V,, not stellar, by

V.={pyeT,|if p*ye T, then b < B, y p-primitive} .
Then
[Tz 3 p° and B(A(y), T.) = B(A(¢), V.) .

pPyeve

Let
a = pi=P"=? = | B(A(¢/), x| for any p-primitive x = A(z') .

Tz 3 = X 'B(A(f‘;)’p’gy)' = L Bage), v

pﬂerc pﬂyevc
— 1 A —_ 1 14 _ 7—1
= —|BA(), T))| = — | A)| = p".
a a

(¢ By (a) and (b), | T«| =< p*. Since | M,| = p",
Q| =7 p" .
Because P is the disjoint union of @ and R, and
|P|=p
we have
Bl =p* — 2 p*
This completes the proof of Lemma 1.

Of course T\ T, denotes {xeT|x¢ T,}.

LEMMA 2. (a) |AP, )| =p"* for any xeT. If xeT\T,,
ye T, then

() AP, 2)N AP, y)| = p*° and

(c) the number of A(¢)e R with x x A() s

®) (AR, @) = pmt — 2 97, o= | Q] .

Proof. (a) If xeT and x * 4, then (%, ---,2,, ) =1 implies
there are p"* choices for 4, «--, t4,.

(b) follows from the fact that x = v (p) and 4, is fixed.

(¢) IfyeT, thenye T, for a unique ¢. By Lemma 1(a) A(P, y) =
A(M,, y) < M, and counting shows A(P,y) = M,. Now it is easy to
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see that | A(Q, )| = « p*°. Since P is the disjoint union of @ and
R, |[AR,2)| = | AP, x)] — | A@, ®)| = p"* — « p"°. This completes
the proof of Lemma 2.

In Theorem 3 if v =2,A° =[1,0, ---, 0], then xe T must satisfy
the congruence

x4+ p N = 0(p7)
2
for some A, -+, A,. Thus
2, = 0(p), o, = pw, for some w, ,
and
wy + XN = 0(p)
S0 (xzr ety Xy 10) =1 and x*/ll.

LEMMA 3. Suppose n=3 and for each N = [L, N, -+, \,] the
congruence

w, + ;N% = 0(p)

has a solution x€ T, where T is a stellar set of points, such that if
xe T and for some integer m

xr = m(wly Lgy ¢ 00y 90”) then g‘.C.d. (xz, ey Xy p) = 1 .
Denote T = (X + 2+, 2,).
Let
T(y) = {myeT|y=5m, m=1,2,3, .-} for some p-primitive
Yo.

Then etther (i) |T|=|TW,)| = p for some y,eT
or (ii) |T|=zp+max(Tw|, 1) for all yeT.

Proof. If |T(y,)|=p for some y,€ T we are done. Assume
|T(y)| < p for all ye T. Then T is a p-primitive set since pfye T
implies

Y 2y, -+, pye T(y) .

T #+ @ implies T'(y,) = 0 for some y,¢ T.
Some calculations show, if ye T\ T(y,), then

@) [4\B(d, T@yo)| = p" — [ T(¥o)| p"
() | B4y \{B(4yy) N B4 T} = 0" — | T'()| p"°
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If v =i, ---,9.),5 =1,2 are two distinect points in T\ T(y, then

. 0 if yi=g; for all ¢ >1
IB(AU y) n B(A” yz)‘ - {pn_g lotgerwiyse .Or sl

Substituting the above, together with (a) and (b), in
3. By, v)\{B(4yy) N B4, TN = X1

yeT\T(yy) A2 BALT (o)
gives
I T = T@w)zp.

3. Proof of Theorem 3. We prove Theorem 3 by induction on
v. The case v = 2 was settled in Lemma 3 where we noted satisfying
the congruences (mod p?) was equivalent to covering 4,. Similarly
satisfying the congruences (mod p"*') is equivalent to covering A,. The
»e 4, play a similar role to the 4,_.(¢) c 4,; (a) and (b) in Lemma 3
play a similar role to (5) and (6) in Theorem 3.

We assume Theorem 3 true for some ¥ = 2 and will show it holds
for v +1. Thus we will be concerned with covering 4,, and shall
congider it in terms of the A, () 4,. We must distinguish two
cases :

Case 1. p > |T,|=p.
Recall the families @', R’, @, R and P defined in §2. A4(¢) € R implies

B(A(t), Ty) = A(¢)
and the induction implies the number of points of T in A(y) is
[Tz p* 4+ max (| Tyl, ) for each A()e T.
In other words, at least p"* points of 7\ 7T, are in each A(¢) < R.

Combining
2 AR )= X [HeeT\Ti|z = A}

z2eT\ Ty A(g’)eR
with (5) and (6) gives
T =Tz 0"

Case 2. For all xe T, p= > | T(x)|.
By induction, the cardinality of the subset of points of 7' that
covers A(y) € P is greater than or equal to p™* + p™=.
Notice that |P| = p*.
Lemma 2 (a) gives | A(P, z)| = p" =&
We have
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AP ) = HeeTlo« A()}

zeT Alplye P

so that
|T|=Zp +p.

4. Proof of Theorems 1 and 2, As remarked earlier, it is
sufficient to prove Theorem 2 in order to conclude Theorem 1. Thus
we shall prove only Theorem 2. By [2] and [3] we may assume
n=3 and o = 2.

We apply Theorem 8 with @ = v=2. Thus we have a result
about covering the A4,_.(¢) < V,*.

Let N = {4, ()| 4o () < V,*}. The number of 4,,(y¢)c V,* is
IN[=1+p+ - +prand |[AN,2)| =1+ p+ --- + p** for any
zeS.

We consider two cases corresponding to those in Theorem 3.

Case 1. |T.| = p*.
Let M= {A,,(1) e N|B(Au_,(t), Ty) = O}
Then
IM|=|N|—|AWN, Ty =p".

By Theorem 3 each 4, (1) € M will need at least p*~* points of S\ 7,
to be covered by S.
If xeS\T,, ye T, then

!A(Nyx)ﬂA(Nyy)l:1+p+ cen +pn—3-

Thus

| A(M, )| = | AN, )| — | A(N, ) N AN, 9)| = p*=2.
Now

2 1AL = Aa-,l%‘;m[t{ace‘S'\ T, @ * A ()]

so by Theorem 3
(IS —=1T)p* =z p* p
and the result follows.
Case 2. For all xze S, p* > | T(x)].

By Theorem 3, to cover each 4, ,(¢)e N will require at least
p*~t 4+ p~* points of S. We have

SAN )= X HveS|wxdi()} .

zeS Ag—pl#)eN
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ISI+p+ -+ )ZA+p+ -+ + 0" )(p** + p*7) and the
theorem follows.

5. Bounds. Our bounds in Theorem 2, 8 and Lemma 1 are the
best possible in the sense that we can exhibit sets of minimum ecar-
dinality which satisfy the conditions. For Theorem 2 let

S={10,:--,0|1 <29} U{@, px,0..+,0) |1 =2 < p='}.
Then
| S| = p* + p*~

and S satisfies all the congruences. Notice that S is composed of
p + 1 disjoint sets T'(x), each of cardinality p*'. We expect this
because of the strict inequality in Case 2 of the proof of Theorem 2,
as compared with the inequality in Case 1.

For Theorem 3 we exhibit a T'(x°) of cardinality "' and a T of
cardinality p"~! + p"~* containing no T'(x) of cardinality greater than
p % Without loss of generality, let »° = [1,0, ..., 0].

T(°) = {(xp,0,---,0,)[I = =< p'}
T = {(0, "':Osxp+C,1)l1§w§p7"2,1§0§p}u
{©0,---,0,Lap)|ll s =p 7.
All the congruences of Theorem 8 are clearly satisfied by each of
these sets.

Finally for Lemma 1 let ¢ be fixed and
T, ={(@" + p"2,0,--+,0, )l s p}.
Then
| T.| = p~
and
B(A(y), T.) = A(g') for all 4(¢)e M, .

The author wishes to thank Dr. G. K. White for his advice and
encouragement in the preparation of this paper.
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