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It is possible to study the structure of rank preservers on
n-square skew-symmetric matrices over an algebraically closed
field F' by considering instead the linear transformations on
the second Grassmann Product Space A2Z(Z an n-dimensional
vector space) over F' into itself, which preserve the irreducible
lengths of the products, In this paper, it is shown that
preservers of irreducible length 2 are also preservers of all
irreducible lengths of the products. Correspondingly, rank 4
preservers are rank 2% preservers for all positive integer
values of k. The structure of the preservers in each case is
deduced from the fact that these preservers are in particular
irreducible length 1 and rank 2 preservers respectively, whose
structures are known,

A nonzero vector in A*%Z is said to have irreducible length k if
it can be written as a sum of % and wnot less than k pure (decom-
posable) nonzero products in A*%/. The set of such products is
denoted by &4 and ze¢ &4 if and conly if <2(2) = k. A linear trans-
formation .7~ of A?* % into itself is an -k preserver if and only
if 7 (A)sA.

A linear transformation .o which takes the set of rank 2k »-
square skew-symmetric matrices into itgelf is a p-2k preserver.

In [7], it is shown that <4 is isomorphic to the set of all rank
2k n-square skew-symmetric matrices. If this isomorphism is denoted
by @, then & = .7 ¢~ is a p-2k preserver if and only if 7 is a
-k preserver. v

To obtain the results of this paper, much use is made of -2
subspaces of A*%/. An -k subspace of A’Z/ is a vector subspace
whose nonzero members are in &,. An .%-2 subspace H is called a
1, 1)-type subspace if there exist fixed nonzero vectors x #* y such
that each nonzero fe H can be written

=2 ANa,+y Nyy.

1. Intersection of (1, 1)-type subspaces.

LEMMA 1. If V,, V, are distinct (1, 1)-type subspaces of dimens-
ton =2 and dimV, NV, = 2, then the 2-dimensional subspaces of Z/
determined by V,, V, are equal.

Proof. Let f,f. be independent in V. V,. Then fi=aAx, +yYAY,
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fi=2 AN, +y ANy in Viand i=u AU, +9AV, L= A\U + v
ANv,in V.. Now <z, y) < <u, w, v, v,y N<u, U, v, v,> wWhich has
dimengion 2 or 3 (Theorem 5 of [2], and Lemma 5 of [3]), and hence
dim <z, y> N {u, v)> <1. Without loss of generality, let « be in this
intersection ; in fact, we can take z = u; and <{u,, v, v,) =<2, ¥, ¥y
and {u, v, v,y =<% Y, ¥,y (Lemma 9 of [2]). Since x Ay Af; =0,
1 =1, 2, then ye<v, v,> and y e<{v, v,» (proof of Lemma 7 in [3]). If
v, v,y = v, vy, then some linear combinaticn of f, and f, has ir-
reducible length at most one, which is impossible since f;, f, are in-
dependent in <~-2 subspaces. Hence {y > = v, v> N v, v.», and
{y> =< v, which implies <z, y> = {u, v).

2. The £~-2 preservers, The structure ¢f &-1 preservers is
known. In fact, in [8], it is shown that if .7 is an .&°-1 preserver,
then .7~ is a compound (i. e., if z A ye &, then there exists a
nonsingular matrix A such that & (x A y) = Ax A Ay), except when
dim % = 4, in which case it may possibly be the compcsite of a
compound and a linear transformation induced by a correlation of the
2-dimensional subspaces of 2. Thus if & is an &°-1 preserver, it
is also an <~-k preserver for all k.

We shall show that if . is an <~-2 preserver, then it is also an
~-1 preserver. Since we shall make use of <~-2 subspaces and
these are varied (see [3]), it will be necessary to consider several cases.

2a. dim % = 7. In [3], it is shown that if dimZ =»n =T,
then the maximal <-2 subspaces have dimension (n-3) and are all
(1, 1)-type subspaces.

LEMMA 2. Let 7 be an ~-2 preserver, dimz = 7. Then 7~
(AccHAU A U{O0L

Proof. Let u A ve.&4. Then u A v is expressible as u A (az,—
x,) where {u, x, 2.} is independent in % and 0 = aecF, a = 1. Now
{u, 2, %} can be extended to a set {u, x, ---, x,} of seven indepen-
dent vectors in %. Then the following 2 subspaces :

Vi=<u AN, + VAN Ty AT+ VA Tgy U AZy + 0 AT,
Vo=lu A%+ 0 A ameu A\ %+ 0 A B U A5+ 0 AT
are both ¢~-2 subspaces and dim V, N V, = 2. Moreover

T (A =99 (u\ax, — )
=T (UANax, +av A\t —uUN&— av Az
= WANax, +avAwx)— . U+ avAx).
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The first vector is in .7 (V,), the second in .7 (V;). Now V,, V, can
be extended to (n-83)-dimensional .~-2 subspaces (necessarily of (1, 1)-
type). Hence 7 (V.), .7 (V,) are (1, 1)-type subspaces of dimension
(n-3) since .7 is an &~-2 preserver, and their intersection has dimension
at least two. Hence the 2-dimensional subspaces (of %) determined
by .7 (V) and 7 (V,) are equal, implying that .7 (u A v) has ir-
reducible length < 2.

THEOREM 1. Let dim 7 =n =T7. Then 9 1s an £ -2 preserver
if and only if F 1is an -1 preserver, and Z 1is a compound.
Moreover, 7 ()< & for all k.

Proof. Suppose 7 is an -2 preserver. If fe <4 and 7 (f)
0, then there exists ge ¢4 such that & (f + g) = 2 (use Theorem 7
of [2]). Then . (f+ ¢9) = .7 (9) € &5. Hence it is sufficient to show
7 (&) does not intersect <.

Suppose @, A 2, € & and .7 (2, A x,) €.%5. Consider the subspace
V generated by {2, =, A®,, 2 =2 A Ziey + T A X}y, 2= 1 5 0-2,
where 77 = <x,, +++, @,>. Any linear combination z = ) "=} a;#; has
irreducible length 2 except when a, = -+ = «,_, = 0, in which case
z = a2, and 7 (a,2;) has irreducible length 2. Hence .7 (V) is an
-2 gubspace of dimension (n-2), which contradicts the fact that the
maximal &~-2 subspaces have dimension (#-3). Hence .7 (1)< 4.
The converse is easy to see (cf. beginning of § 2).

2b. dim % = 4, 5. By Theorem 7 of [2], it is clear that <4,
k = 3, is trivial when dim 2 < 5. The following lemma is immediate.

LEMMA 3. Let dim % <5, .9 an -2 preserver. Then I~
(A)cHr U HU{0}

THEOREM 2. Let dim % = 4. Then 7 s an £-2 preserver if
and only if 7 is an -1 preserver.

Proof. Suppose .7 is an .&-2 preserver. Suppose &, A 4, € &
and .7 (v, Ax,) = 0. Extend {x, x,} to a basis {x, ---, 2} of Z.
Then 2, A @, + «; A 2, has irreducible length 2 and hence

j_(xl/\xz"‘xs/\%):f(xa/\%)-

hag irreducible length 2. Hence the above and Lemma 3 imply it is
sufficient to show only that 9~ (&) R_ 4.

Suppose 7 (x, A ;) has irreducible length 2 for =, A @€ &
Consider the subspace V generated by the products z, = ¢, A @;;

2, =2, N2+ % A\ @, Where Z7 =&, +++, T .
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Then any linear combination z = ar, + Bz, has irreducible length 2
unless 8 =0, in which case 7 () = .7 (az,) which has irreducible
length 2 by assumption. Hence .7 (V) is an .&°-2 subspace of dimension
2. But this contradicts the fact that the &~-2 subspaces have dimen-
sion one and no more (Theorem 10 of [2]). The result follows. The
converse is easy to see.

THEOREM 3. Let dim Z = 5. Then 9 ts an .Z°-2 preserver
if and only if I is an £ -1 preserver.

Proof. As in the procf of Thecrem 2, it is sufficient to show
TN . Let 7 =<u, <+, usy. Suppose u, A U, €., and .7~
(u, N\ us) € &5, Then consider the subspace V generated by the
products

2= U A\ Uy,

2y = U N\ Uy + Uy A Uy

Zg = U, A Uy Uy A Uy,

By = Uy \ Ug + Uz /\ Us «
Then z = 3 ., a2, has irreducible length 2 except when a, =0 = «,
= «,, in which case z = axz, and .7 (@z) e <45. Hence .7 (V) is an

%#-2 subspace of dimension 4. But this contradicts the fact that the
maximal $~-2 subspaces have dimensicn 3 (see Thesrem 1 of [3]).

2¢. dim % = 6. The following lemma is clear from Theorem 7
of [2].

LeMMA 4. Let dim % =6, .9 an -2 preserver. Then
3
Fae{uztuloy.

It is thus necessary to consider also the .&7-3 subspaces.
If z¢ &7, then we can agscciate a unigue 2k-dimensional subspace
[2] of Z~ with 2z (Theorem 5 of [2]).

LEMMA 5. Let zc <&, and x,€[z]. Then there is a representation
2= Uy U A\ U e Uy A Uy, WheTe (g, ooy Uy = [2] — L2,
Proof. Let x, be extended to a basis {x, ---, 2y} of [2]. Then

=a, A Qo ;) + D AN w2 <t AN j < 2k) .

By Corollary 8 of [2] and the fact that &£ (z) = k, the second term
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in the expression of z has irreducible length (k-1). The result follows.

THEOREM 4. Let dim % = 6. H an -3 subspace. Then dim
H=1.

Proof. If u,€Z and f is any nonzero member of H, then u, ¢
[F]1. Hence f can be represented f = u, A u + y, where weZ and
ye s, [yl —<w); (Lemma 5). This latter subspace has
dimension 5. Thus, if f,, f; are any 2 nonzero members of H, then
Ji= U A Uy + Uy A Uy + Us A Uy Where Z7 = Uy, oo+, Uy », and f, can
be expressed as f; = u, A ¥, + Us A Y. + Us A Ys Where y; = 3., a;5u;,
using the fact that {f,, f,) is an &-3 subspace, Corollary 8 of [2]
and Corollary 1 of [3].

Consider f=9fi+ foy veF. Now f=u A [(7v + ap)u, + a,u;+
Q1%+ Gyl + ugl] +Us A [GosUo+ (Y Qay) Uy + Bosls - Qaglhg] + %5 N [A5Us+-
Qssthy + Qahy + (7 + s) Ug] = W, A W, + w5 A W, + w5 /\ W, putting w, =
Uy Wy = [(V + Gy + Qths + @y + Qs + as%], and so on. Then
Z(f) =8 if and only if the vectors w,---, w; are independent
(Theorem 7 of [2]); i.e., if and only if the determinant of the matrix
(a:;), where a,;; is the coefficient of u; in w;; ¢,7 =1, ---, 6; i8 non-
zero. However this determinant is a monic polynomial in v of degree
85 Vize, (V 4 1) ((V + @) (7 + Q) — Uayllag) — Aa(@u(Y + Qgg) — Aaels)) + @y
(a0 — a (Y + a,)), whose constant term must be nonzero since the
vectors u,, u, s, Y, Yo, Ys are independent. Hence there is a monzero
value of v in F for which the determinant is zero (since F is alge-
braically closed). For this value of v, &°(f) < 3. Hence there is at
most one basis member in H.

THEOREM 5. Let dimz = 6. Then F s an -2 preserver if
and only if 7 1is an -1 preserver.

Proof. It ig sufficient to prove that 7 (&7) does not intersect
A U 4 (ef. proof of Theorem 2 and use Lemma 4).

Suppose Z =< uy, -+, Uy » and 7 (u; A ug) € L,. Consider V=
{#, +++, 2, ) Where

By = U N\ Uy By = Uy AN\ Us + Up A Uy Ba=Uy N\ Uy + Uy N\ Uy ;

2y = Uy N\ Us + Uy N Ug .
Then .7 (¥7) is an <~-2 subspace of dimension 4, contradicting the
fact that the maximal -2 subspaces have dimension 3 (Theorem 11
of [3]).

Suppose .7 (u, A\ u;) € 5. Let 77 =<z, 2> where z, = u, A\ Uy
Zg = Uy A\ Uy + Uy A Uy + U A U  Then 7 (¥7) is an -3 subspace
of dimension 2, contradicting Theorem 4.
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3. The main results. We can now assert:

THEOREM 6. .7 s an F-2 preserver if and only if .7 is an
-1 preserver. If 7 is an & -2 preserver, then 7~ is an F-k
preserver, k=1, 2, ..., [n/2], dim % = n, and F is a compound
except when n = 4, in which case F may possibly be a composite
of a compound and a linear transformation induced by a correlation
of the 2-dimensional subspaces of 7.

Using the results in [7], we can also assert the following.

THEOREM 7. .%° is a p-4 preserver if and only if & is a p-2
preserver. If &7 is a p-4 preserver, then & is a -2k preserver,
E=1,2,..., [n/2]. Moreover, if A is any n-square skew-symmetric
matriz, then (A) = aPAP’ or <#(A) = BPA’ P’ for «, B monzero
wn F and some nonsingular n-square matrix P except when n = 4, in
which case ¥ may possibly be of the form

0 3y Aoy Oy
Qg 0 Ay Qg3
S (4) = aP j
— gy —Qy 0 Ay
—Qyp —Qy —@, O
where 4 = (a;;), a;; = —a;;.

REMARK. These results are not necessarily true when the un-
derlying field F' is nonalgebraically closed (cf. § 2b. and end of [2]).
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