Pacific Journal of Mathematics

SYMPLECTIC BORDISM, STIEFEL-WHITNEY NUMBERS, AND A NOVIKOV RESOLUTION

DON DAVID PORTER

Vol. 35, No. 1

September 1970

SYMPLECTIC BORDISM, STIEFEL-WHITNEY NUMBERS, AND A NOVIKOV RESOLUTION

DON PORTER

Using an Adams type spectral sequence due to Novikov, this paper presents a proof of:

THEOREM A. If M is a manifold representing a class in the symplectic bordism group Ω_m^{Sp} , $m \neq 8k$, then M bounds an unoriented manifold.

The method of proof yields some further information; a more precise statement may be found in §4 below.

The complex Thom spectrum MU defines a (generalized) cohomology theory U^* . The ground ring in this theory, $\Lambda_* = U^*(pt)$ is isomorphic to the complex bordism ring Ω^v_* , where Λ_* has nonpositive grading and Ω^v_* nonnegative. Novikov [8] computed the algebra A^v of operations for the theory $U^*, A^v \cong \Lambda^* \otimes S$. Here \otimes denotes completed tensor product over Z (cf. [5]), and S is a Hopf algebra over Z generated by the set of operations s_{α} , one for each partition α of an integer $|\alpha|$. Novikov also constructed a spectral sequence

$$E_2 = \operatorname{Ext} A^{\scriptscriptstyle U}(U^*(X), \Lambda^*) \Longrightarrow \pi_*(X)$$

converging to the stable homotopy ring of a ring spectrum X (cf. [1]). We apply this theory to derive information about Ω_*^{Sp} , the homotopy of the symplectic Thom spectrum MSp. In section one the structure of $U^*(MSp)$ is investigated; section two describes a resolution for $U^*(MSp)$; section three computes the necessary part of the E_2 term of the spectral sequence; section four completes the proof of Theorem A.

1. Recall that Λ^* is a polynomial ring over Z on generators $t_i \in \Lambda_{-2i}$. Also $H^*(BSp)$ is a polynomial ring over Z on the symplectic Pontrjagin classes $P_i \in H^{*i}(BSp)$. It follows from the Thom isomorphism and the Atiyah-Hirzebruch spectral sequence that there is an isomorphism of Λ_* -modules

$$F: \Lambda_* \bigotimes H^*(BSp) \to U^*(MSp)$$

given by

$$F(1\bigotimes P_i) = (-1)^i s_{{\scriptscriptstyle {\cal A}}_{2i}}(u)$$
 .

Here u denotes the Thom class in $U^{\circ}(MSp)$ and \mathcal{A}_n is the partition of n consisting entirely of ones. The proof is similar to [3, p. 49]. In order to study the action of A^{v} on $U^{*}(MSp)$, let $E: A^{v} \rightarrow U^{*}(MSp)$ be the map which evaluates operations on the Thom class. We will determine the "top dimension" of $E(s_{\alpha})$. There is a natural transformation

$$B: U^*(\cdot) \to H_*(MU) \widehat{\otimes} H^*(\cdot)$$

defined by the commutativity of the diagram

$$U^{*}(X) \xrightarrow{B} H_{*}(MU) \widehat{\otimes} H^{*}(X)$$

$$\uparrow \cong$$

$$\operatorname{Hom} (H^{*}(MU), H^{*}(X))$$

where *i* is defined by taking induced maps in integral cohomology. Note that on $U^*(pt) = \Lambda_*$, *B* is just the Hurewicz map. Consider the *Z* basis for $H^*(BU)$ consisting of an element c_{α} for every partition α , where c_{α} is the α symmetric function of the Chern classes $c_i = c_{J_i}$ [cf. 2]. Similarly consider the Λ_* -basis for $U^*(BU)$ consisting of the Conner-Floyd characteristic classes cf_{α} [4]. Finally let $H_*(MU)$ be given as the integral polynomial ring on classes $a_i \in H_{2i}(MU)$, and for $\omega = (i_1, \dots, i_n)$ let $a^{\omega} = a_{i_1} \cdots a_{i_n}$.

PROPOSITION 1. If $B: U^*(BU) \to H_*(MU) \widehat{\otimes} H^*(BU)$ is the map defined above, then

$$B(cf_{{\scriptscriptstyle\mathcal{A}}_k})=\sum a^{\scriptscriptstyle\omega}\,\widehat{\otimes}\,c_{{\scriptscriptstyle\mathcal{A}}_k}\!\cdot\!c_{\scriptscriptstyle\omega}$$
 ,

where the sum is over all partitions ω of length at most k.

Proof. Suppose $g: CP(\infty) \to MU(1)$ is a homotopy equivalence representing a class $y \in U^2(CP(\infty))$ which generates $U^*(CP(\infty))$ as a polynomial ring over Λ_* . Similarly let $c \in H^2(CP(\infty))$ be a generator for $H^*(CP(\infty))$. Now if $b_i \in H^{2i}(MU)$ is dual to $a_i \in H_{2i}(MU)$, we have $g^*(b_i) = c^{i+1}$. So $B: U^*(CP(\infty)) \to H_*(MU) \otimes H^*(CP(\infty))$ is given by

$$B(y) = \sum\limits_{i \geqq 0} a_i \, \widehat{\otimes} \, c^{i+1}$$
 .

In the limit $CP(\infty) = BU(1) \rightarrow BU$, this is the statement of the proposition for k = 1, since $c_{d_1} \cdot c_{(n)} = c_{(n+1)} \equiv (c_{d_1})^{n+1}$ modulo the ideal generated by c_2, c_3, \cdots . This ideal restricts to zero in BU(1), so $B(cf_{d_1})$ is as claimed. The proposition now follows by an application of the splitting principle.

Let $f: BSp \rightarrow BU$ classify the universal symplectic bundle γ over BSp. Then we have immediately:

PROPOSITION 2. The map $B: U^*(BSp) \to H_*(MU) \otimes H^*(BSp)$ is given by

$$B(cf_{{\scriptscriptstyle {\cal I}}_k}(\gamma)) = \sum a^{\omega} \,\widehat{\otimes}\, f^{\,*}(c_{{\scriptscriptstyle {\cal I}}_k}\!\cdot\! c_{\omega})$$
 ,

where the sum is over all partitions ω of length at most k.

Note that $f^*(c_{\alpha})$ is given by replacing the odd elementary symmetric functions in the α symmetric function with zero, and the 2*i*th elementary symmetric function with $(-1)^i P_i$. In particular,

$$f^{st}(c_{{\scriptscriptstyle {A_{2k+1}}}})=0 \ f^{st}(c_{{\scriptscriptstyle {A_{2k}}}})=(-1)^k P_k \;.$$

Next we consider the following commutative diagram:

where Φ is the Thom isomorphism. By definition, $s_{\alpha} = \Phi(cf_{\alpha})$, so we have $E(s_{\alpha}) = (cf_{\alpha}(\gamma))$. Let K be the subring of $U^*(BU)$ generated by $\{cf_{d_{2i}}\}$, so that $U^*(f)|_{K}$ is an isomorphism of K with $U^*(BSp)$. Now since B is a monomorphism, it will determine the Hurewicz image of coefficients in Λ_* expressing $cf_{\alpha}(\gamma)$ in terms of $cf_{d_{2i}}(\gamma)$. But F was chosen so that $\Phi(cf_{d_{2i}}(\gamma)) = s_{d_{2i}}(u) = F(1 \otimes (-1)^i P_i)$, thus we have the coefficients in $F^{-1}(E(s_{\alpha}))$ determined recursively. The first step is given by

PROPOSITION 3. Let $\rho: \Lambda_* \otimes H^*(BSp) \to \Lambda_0 \otimes H^*(BSp)$ be projection on the top dimension in Λ_* . Then

$$ho\circ F^{-1}\circ E(s_lpha)=1\otimes f^*(c_lpha)$$
 .

Proof. Let $\rho': H_*(MU) \otimes H^*(BSp) \to H_0(MU) \otimes H^*(BSp)$ be projection, then by Proposition 2

$$ho' \circ B(cf_{{\scriptscriptstyle\mathcal{A}}_k}(\gamma)) = 1 \bigotimes f^*(c_{{\scriptscriptstyle\mathcal{A}}_k})$$
 .

Thus $\rho' \circ B(cf_{\alpha}(\gamma)) = 1 \otimes f^*(c_{\alpha})$. Now the Hurewicz map $\Lambda_0 \to H_0(MU)$ is the identity, so $\rho' \circ B = \rho \circ F^{-1} \circ \Phi$, and the proposition follows. This formula is an explicit expression for the top dimension of $E(s_{\alpha})$.

2. From this information on the A^{v} -module structure of $U^{*}(MSp)$, we will construct a resolution for $U^{*}(MSp)$. Let κ_{α} be the unique element of the subring K of $U^*(BU)$ such that $U^*(f)(\kappa_{\alpha}) = U^*(f)(cf_{\alpha})$. Let $\mathscr{R}_{\alpha} = \varPhi(\kappa_{\alpha})$, so $(s_{\alpha} - \mathscr{R}_{\alpha})$ is an element of the kernel of E. Let Θ_n be the set of those partitions ω of n which cannot be written $\omega = (\alpha, \alpha)$, and let $\Theta = \bigcup_{n>0} \Theta_n$.

THEOREM 1. The set $\{(s_{\beta} - \mathscr{R}_{\beta}): \beta \in \Theta\}$ generates the kernel of E as a free Λ_* -module.

For the proof of this theorem, we require some data on symmetric functions. Recall the classes $c_{\omega} \in H^*(BU)$, and define $c^{\alpha} = c_{d_{i_1}} \cdots c_{d_{i_n}}$, if $\alpha = (i_1, \dots, i_n)$. Introduce a linear ordering, >, on the set of partitions of k by taking the longest first and ordering lexicographically among partitions of the same length. For every partition ω of k, we define another partition $T(\omega)$ of k as follows: $T(\omega) = (r_1 + \cdots + r_q, r_2 + \cdots + r_q, \dots, r_q)$, where q is the largest integer in ω , and r_j is the number of j's in ω . Note that $\beta \notin \Theta$ if and only if $T(\beta) = 2\alpha$. Then the following lemmas are elementary.

LEMMA 1. There are integers $m(\alpha, \beta)$ for every pair of partitions α, β of k such that $c^{\alpha} = \sum m(\alpha, \beta)c_{\beta}$. Moreover, $m(\beta, T(\beta)) = 1$ and $m(\alpha, \beta) = 0$ for $\beta > T(\alpha)$.

LEMMA 2. There are integers $\overline{m}(\beta, \alpha)$ for every pair of partitions α, β of k such that $c_{\beta} = \sum \overline{m}(\beta, \alpha)c^{\alpha}$. Moreover, $\overline{m}(\beta, T(\beta)) = 1$ and $\overline{m}(\beta, T(\gamma)) = 0$ for $\gamma > \beta$.

Now suppose for every partition α of $|\alpha|$ there is given an element $x_{\alpha} \in \Lambda_{2|\alpha|-d}$, so that $\sum x_{\alpha}s_{\alpha}$ is an operation of degree d in A^{U} , written in Novikov's notation [8]. Suppose that $E(\sum x_{\alpha}s_{\alpha}) = 0$, and that $x_{\alpha} = 0$ for $|\alpha| < k$. We write ρ_{k} for the projection $S \otimes \Lambda_{*} \to S_{k} \otimes \Lambda_{*}$ onto elements of degree k in S. Now proceeding by induction on k, for the proof of Theorem 1 it will suffice to show

$$ho_{k}(\sum x_{lpha}s_{lpha})=
ho_{k}\Bigl(\sum_{\scriptscriptstyleeta\inartheta}y_{eta}(s_{eta}-\mathscr{R}_{eta})\Bigr)$$

for some unique coefficients $y_{\beta} \in \Lambda$.

First consider the case of odd k. For $|\alpha| = k$ odd, we have $\alpha \in \Theta$. From Proposition 2 we have that $\rho' \circ B(cf_{d_k}(\gamma))$ is zero for odd k. Thus $\kappa_{\alpha} = \sum_{|\gamma|>k} y_{\alpha} cf_{\gamma}$, and $\rho_k(\mathscr{R}_{\alpha}) = 0$, and $\rho_k(\sum x_{\alpha} s_{\alpha}) = \rho_k(\sum_{|\alpha|=k} x_{\alpha}(s_{\alpha} - \mathscr{R}_{\alpha}))$. By Proposition 3, $k \geq 1$, so this also provides the initial case for the induction, k = 1.

For k even, since $E(\sum x_{\alpha}s_{\alpha}) = 0$ we have

$$ho\circ F^{-1}\circ E(x_lpha s_lpha)=0$$
 ,

 \mathbf{SO}

$$\sum_{|\alpha|=k} x_{lpha} \otimes f^*(c_{lpha}) = 0$$
 ,

and

$$\sum_{|\alpha|=k} (-1)^{|\gamma|} x_{\alpha} \bar{m}(\alpha, 2\gamma) = 0$$

for every γ with $2|\gamma| = k$. Now by Lemma 2, these equations may be solved uniquely for $x_{\alpha}, \alpha \notin \Theta$ in terms of $x_{\alpha}, \alpha \in \Theta$. Thus it suffices to prove that the matrix indexed by $\alpha, \beta \in \Theta_k$ whose (α, β) entry is the coefficient of s_{α} in $(s_{\beta} - \mathscr{R}_{\beta})$ is invertible. Notice that Proposition 3 implies

$$ho_{\scriptscriptstyle |\beta|}(\mathscr{R}_{\scriptscriptstyleeta}) = \sum\limits_{2|\gamma| = |\beta|} (-1)^{\scriptscriptstyle |\gamma|} ar{m}(eta,\,2\gamma) \Bigl(\sum\limits_{\eta} m(2\gamma,\,\eta) s_\eta\Bigr)$$
 .

Then by Lemmas 1 and 2, if the coefficient of s_{η} is \mathscr{R}_{β} is nonzero, we have $\eta < \beta$. This completes the proof of Theorem 1.

We now construct the first stage of a resolution; the remaining stages may be obtained by a simple iteration. Let $C_0 = A^{\nu}$ and let C_1 be the free A^* -module generated by $\{G_{\beta}: \beta \in \Theta\}$. Define $d_1: C_1 \to C_0$ by $d_1(G_{\beta}) = s_{\beta} - \mathscr{R}_{\beta}$. Then the following sequence is exact:

$$0 \longleftarrow U^*(MSp) \xleftarrow{E} C_0 \xleftarrow{d_1} C_1 .$$

There is an isomorphism Hom $A^{v}(A^{v}, \Lambda_{*}) \cong \mathcal{Q}_{*}^{v}$ defined by evaluation on the Thom class followed by the Atiyah duality isomorphism. The gradings are nonnegative here, so we take \mathcal{Q}_{*}^{v} rather than Λ_{*} . Thus if $g_{\beta}: C_{1} \to \Lambda_{*}$ is the dual of G_{β} , we have

$$\mathcal{Q}_{*}^{\scriptscriptstyle V} \cong \operatorname{Hom}_{{}_{A^{\scriptscriptstyle U}}}(C_{\scriptscriptstyle 0},\, \Lambda_{*}) \overset{d_{\scriptscriptstyle 1}}{\longrightarrow} \operatorname{Hom}_{{}_{A^{\scriptscriptstyle U}}}(C_{\scriptscriptstyle 1},\, \Lambda_{*})$$

given by

$$d_{\scriptscriptstyle 1}^*(y) \,=\, \sum\limits_{\scriptscriptstyleeta\,\in\,artheta}\,(s_{\scriptscriptstyleeta}\,-\,\mathscr{R}_{\scriptscriptstyleeta})(y)g_{\scriptscriptstyleeta}$$
 .

3. At this point we may compute

$$E^{{}_{2}{}_{2}{}_{*}{}_{*}{}_{*}}=\operatorname{Ext}^{{}_{a}{}_{U}{}_{*}}(U^{*}(MSp),\, arLambda_{*})=\ker d_{{}_{1}{}^{*}}\, .$$

LEMMA 3. Let $X \in \Omega_{2n}^{\sigma}$ be dual to $z \in \Lambda_{-2n}$. Then $d_1^*(X) = 0$ if and only if $(s_{\omega} - \mathscr{R}_{\omega})(z) = 0$ for all $\omega \in \Theta_n$.

Proof. Suppose there is a $\beta \in \Theta$, $|\beta| \neq n$, such that $(s_{\beta} - \mathscr{R}_{\beta})(z) \neq 0$.

It will suffice to find $\gamma \in \Theta_n$ with $(s_{\gamma} - \mathscr{R}_i)(z) \neq 0$. Let $(s_{\beta} - \mathscr{R}_{\beta})(z) = y \in A_{-2k}, y \neq 0, k \neq 0$. Then there is an $\alpha, |\alpha| = k$, such that $s_{\alpha}(y) \neq 0 \in A_0$. By Theorem 1, we may express $s_{\alpha}(s_{\beta} - \mathscr{R}_{\beta})$ in terms of $\{s_{\gamma} - \mathscr{R}_{\gamma}: \gamma \in \Theta\}$, so there is a $\gamma \in \Theta_n$ with $(s_{\gamma} - \mathscr{R}_{\gamma})(z) \neq 0$.

THEOREM 2. $E_2^{0,*}$ is a polynomial ring over Z with one generator X_i in every dimension $4i \ge 0$.

Proof. Since $E_2^{0,*}$ is a subring of Ω_*^{σ} given as the kernel of a map of free abelian groups, it suffices to count dimensions. The theorem now follows from Lemma 3.

It is interesting to note that Lemma 3 together with Proposition 3 gives an explicit criterion for the elements $X_i \in \mathcal{Q}_{ii}^{r}$. These elements X_i are polynomial generators for $\mathcal{Q}_*^{sp} \otimes Q$.

4. The proof of Theorem A requires two further facts.

PROPOSITION 6. For $X \in E_2^{0,*}$, the image $[X]_2$ of X in the unoriented bordism ring \mathfrak{N}_* is a fourth power.

Proof. It will suffice to show that the dual Stiefel—Whitney numbers $\bar{w}_{\alpha}(X)$ vanish for $\alpha \neq (\gamma, \gamma, \gamma, \gamma)$. Recall [10, p. 256] that the ω symmetric function, $\omega \in \Theta$, is contained in the ideal generated by 2 and the odd elementary symmetric functions. Thus $\rho_{|\omega|}(\mathscr{R}_{\omega})$ is divisible by 2, and $s_{\omega}(z) \equiv 0 \pmod{2}$ for $\omega \in \Theta_{2n}$, and z the dual of $X \in \ker d_1^*$ in dimension 4n. But for such X and ω , $s_{\omega}(z) = c_{\omega}(\nu X)$, the normal Chern numbers. These reduce mod 2 to the dual Stiefel—Whitney numbers.

$$c_{\scriptscriptstyle \omega}({m
u} X)\equiv ar w_{\scriptscriptstyle \omega, \scriptscriptstyle \omega}(X) \ {
m mod} \ 2$$
 ,

so for $\omega \in \Theta_{2n}$, $\overline{w}_{\omega,\omega}(X) = 0$. Since $X \in \Omega^{\sigma}_*$, $[X]_2$ is a square [7], so $\overline{w}_{\alpha}(X) = 0$ for $\alpha \neq (\omega, \omega)$. The only possible α for which $\overline{w}_{\alpha}(X) \neq 0$ is thus $\alpha = (\gamma, \gamma, \gamma, \gamma)$.

Novikov shows that $\operatorname{Ext}_{A^U}^{s,*}(U^*(Y), \Lambda_*)$ is a torsion group for s > 0, for any Y [8]. Thus integral multiples of the X_i are generators for Ω_{ii}^{Sp} . Moreover the E_2 term contains only 2-torsion, as may be seen from [6, 8], so the multipliers are all powers of two. Recall the generators $t_i \in \Omega_{2i}^{\sigma}$, and let $t^{\omega} = t_{i_1} \cdots t_{i_n}$ for $\omega = (i_1, \cdots, i_n)$.

PROPOSITION 7. Let X_i be as in Theorem 2, with $X_i = \sum a(\omega)t^{\omega}$ for integer coefficients $a(\omega)$. Suppose $[X_i]_2 \neq 0$. Then there is an $\omega = (2\alpha, 2\alpha)$ with $a(\omega) \equiv 1 \pmod{2}$.

Proof. By Proposition 6 there are $Y, Y' \in \Omega_*^{\tau}$ such that $X_i = Y^2 + 2Y'$, since $[Y^2]_2$ is a fourth power, by [7]. Thus $a(\omega) \equiv 0 \pmod{2}$ unless $\omega = (\beta, \beta)$. However if β contains an odd number the symplectic Pontrjagin numbers of t^{β} are all zero for dimensional reasons. Thus if $a(2\alpha, 2\alpha) \equiv 0 \pmod{2}$ for all α , the Stiefel—Whitney numbers of X_i vanish, and $[X_i]_2 = 0$.

THEOREM 3. Suppose $X \in \Omega_*^{S_p}$ and $[X]_2 \neq 0$. Then X is in the subring of $\Omega_*^{S_p}$ generated by those $X_{2i} \in E_2^{0,8i} \subset \Omega_{8i}^{T}$ on which all differentials in the spectral sequence vanish.

Proof. Since $|(2\alpha, 2\alpha)| = 4|\alpha|$, it follows from Proposition 7 that $[X_i]_2 \neq 0$ implies *i* is even. The rest of the statement follows immediately from the existence of the spectral sequence.

Now Theorem A is just a simplification of Theorem 3. It should be noted that the map $\Omega_*^{s_p} \to \mathfrak{N}_*$ factors thru Ω_*^{v} , so any torsion element of $\Omega_{4i}^{s_p}$ bounds in \mathfrak{N}_* . Moreover $\Omega_*^{s_p} \otimes Q$ is a polynomial algebra on $X_i \in \Omega_{4i}^{s_p} \otimes Q$, so for $X \in \Omega_n^{s_p}$, $[X]_2 = 0$ unless n = 4k. Thus the content of Theorem A is that $[\Omega_{8k+4}^{s_p}]_2 = 0$.

The author has been informed of some recent work of E. E. Floyd which overlaps considerably with the above results. Using very different methods, Floyd gives a more refined upper bound for the image of $\Omega_*^{S_p}$ in \mathfrak{N}_* .

This work formed part of the author's doctoral thesis at Northwestern University, under the direction of Professor Mark Mahowald. A summary appeared as [9].

References

1. J. F. Adams, Lectures on generalized cohomology, in category theory, homology theory and their applications III, Springer, Berlin, 1969.

2. ____, S. P. Novikov's work on complex cobordism, lecture notes, University of Chicago, 1967.

3. P. E. Conner, and E. E. Floyd, *Differentiable periodic maps*, Springer, Berlin, 1964.

4. _____, The relation of cobordism to k-theories, Springer, Berlin, 1966.

5. P. S. Landweber, *Cobordism operations and Hopf algebras*, Trans. Amer. Math. Soc. **129** (1967), 94-110.

6. J. W. Milnor, On the cobordism ring Ω^* and a complex analogue, Amer. J. Math. 82 (1960), 505-521.

7. _____, On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds, Topology 3 (1965), 223-230.

8. S. P. Novikov, The methods of algebraic topology from the viewpoint of cobordism

theory, Izv. Akad. Navk SSSR (Ser. Mat.) **31** (1967), 855-956 (Math. USSR-Izv. **1** (1967), 827-913).

9. D. D. Porter, Novikov resolutions for symplectic cobordism, Notices Amer. Math. Soc. 17 (1970), 150-151.

10. R. E. Stong, Notes on cobordism theory, Princeton, 1968.

Received February 17, 1970.

STATE UNIVERSITY OF NEW YORK AT ALBANY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON Stanford University Stanford, California 94305

University of Washington

Seattle, Washington 98105

RICHARD PIERCE

J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B.

B. H. NEUMANN F. WOLF

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA	STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY	UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA	UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY	WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA	UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY	* * *
OREGON STATE UNIVERSITY	AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON	CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY	TRW SYSTEMS
UNIVERSITY OF SOUTHERN CALIFORNIA	NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of MathematicsVol. 35, No. 1September, 1970

B. D. Arendt and C. J. Stuth, <i>On the structure of commutative periodic semigroups</i>	1
B. D. Arendt and C. J. Stuth, <i>On partial homomorphisms of semigroups</i>	7
Leonard Asimow, <i>Extensions of continuous affine functions</i>	11
Claude Elias Billigheimer, Regular boundary problems for a five-term	
recurrence relation	23
Edwin Ogilvie Buchman and F. A. Valentine, A characterization of the parallelepiped in E^n	53
Victor P. Camillo, A note on commutative injective rings	59
Larry Jean Cummings, <i>Decomposable symmetric tensors</i>	65
J. E. H. Elliott, On matrices with a restricted number of diagonal values	79
Garth Ian Gaudry, Bad behavior and inclusion results for multipliers of type	
(p, q)	83
Frances F. Gulick, <i>Derivations and actions</i>	95
Langdon Frank Harris, On subgroups of prime power index	117
Jutta Hausen, The hypo residuum of the automorphism group of an abelian	
<i>p-group</i>	127
R. Hrycay, Noncontinuous multifuctions	141
A. Jeanne LaDuke, On a certain generalization of p spaces	155
Marion-Josephine Lim, Rank preservers of skew-symmetric matrices	169
John Hathway Lindsey, II, On a six dimensional projective representation of	
the Hall-Janko group	175
Roger McCann, <i>Transversally perturbed planar dynamical systems</i>	187
Theodore Windle Palmer, <i>Real C*-algebras</i>	195
Don David Porter, Symplectic bordism, Stiefel-Whitney numbers, and a	
Novikov resolution	205
Tilak Raj Prabhakar, On a set of polynomials suggested by Laguerre	
polynomials	213
B. L. S. Prakasa Rao, <i>Infinitely divisible characteristic functionals on locally</i>	
convex topological vector spaces	221
John Robert Reay, <i>Caratheodory theorems in convex product structures</i>	227
Allan M. Sinclair, <i>Eigenvalues in the boundary of the numerical range</i>	231
David R. Stone, <i>Torsion-free and divisible modules over matrix rings</i>	235
William Jennings Wickless, A characterization of the nil radical of a	
ring	255