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Using an Adams type spectral sequence due to Novikov,
this paper presents a proof of:

THEOREM A, If M is a manifold representing a class in
the symplectic bordism group 257, m + 8k, then M bounds an
unoriented manifold,

The method of proof yields some further information; a more
precise statement may be found in §4 below.

The complex Thom spectrum MU defines a (generalized) cohomo-
logy theory U*. The ground ring in this theory, 4, = U*(p?) is
isomorphic to the complex bordism ring 2Y, where 4, has nonpositive
grading and QY nonnegative. Novikov [8] computed the algebra AY
of operations for the theory U*, A” = A*® S. Here & denotes com-
pleted tensor product over Z (cf. [5]), and S is a Hopf algebra over
Z generated by the set of operations s,, one for each partition a of
an integer |a|. Novikov also constructed a spectral sequence

E, = Ext A"(UX(X), 4%) = 1(X)

converging to the stable homotopy ring of a ring speetrum X (cf. [1]).
We apply this theory to derive information about 257, the homotopy
of the symplectic Thom spectrum MSp. In section one the structure
of U*(MSp) is investigated; section two describes a resolution for
U*(MSp); section three computes the necessary part of the E, term
of the spectral sequence; section four completes the proof of Theorem
A.

1. Recall that 4* is a polynomial ring over Z on generators ¢; ¢
Ay Also H*(BSp) is a polynomial ring over Z on the symplectic
Pontrjagin classes P, ¢ H*¥(BSp). It follows from the Thom isomorphism
and the Atiyah-Hirzebruch spectral sequence that there is an isomor-
phism of 4,-modules

F: A, & H*(BSp) — U*(MSp)
given by
FL®P) = (—1)s,,(w) .

Here u denotes the Thom class in U°(MSp) and 4, is the partition of
n congisting entirely of ones. The proof is similar to [3, p. 49].
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In order to study the action of AY on U*(MSp), let E: AV —
U*(MSp) be the map which evaluates operations on the Thom class.
We will determine the “top dimension” of E(s,). There is a natural
transformation

B: U(-) — H.(MU) & H*(+)

defined by the commutativity of the diagram

U*(X) -2 H,(MU) @ H*(X)

N Iz
7,\ =
Hom (H*(MU), H*(X))

where ¢ is defined by taking induced maps in integral cohomology.
Note that on U*(pt) = 4,, B is just the Hurewicz map. Consider the
Z basis for H*(BU) consisting of an element ¢, for every partition
a, where ¢, is the a symmetric function of the Chern classes ¢; = ¢y,
[ef. 2]. Similarly consider the A,-basis for U*(BU) consisting of the
Conner-Floyd characteristic classes ¢f, [4]. Finally let H,(MU) be
given as the integral polynomial ring on classes a,¢ H,(MU), and for
@ = (ty-y1,) let a® =a; -0 -0q,.

Prorosition 1. If B: U*(BU)— H,(MU) ®H*(BU) 18 the map
defined above, then

B(cfs) = >, a° ® €4, Co »

where the sum is over all partitions @ of length at most k.

Proof. Suppose g: CP(«)-— MU(l) is a homotopy equivalence
representing a class y e U*CP()) which generates U*(CP()) as a
polynomial ring over A,.. Similarly let ce H*(CP()) be a generator
for H*(CP()). Now if b,e H*(MU) is dual to a;,c H,;(MU), we have
g*(b) = ¢*'. 8o B: U*(CP(c0)) — H,(MU) ® H*(CP(«)) is given by

B = Y & e,

In the limit CP(«) = BU(1)— BU, this is the statement of the pro-
position for k =1, since ¢, ¢ = €y = (€,)""" modulo the ideal
generated by c,, ¢;, -+, This ideal restriets to zero in BU(1), so B(cf,,)
is as claimed. The proposition now follows by an application of the
splitting prineciple.

Let f: BSp — BU classify the universal symplectic bundle v over
BSp. Then we have immediately:
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ProrositioN 2. The map B: U*(BSp)—»H*(MU)@)H*(BSp) 8
given by

Blef4,() = 30° Q) F*(esca) »

where the sum s over all partitions @ of length at most k.

Note that f*(c,) is given by replacing the odd elementary sym-
metric fuctions in the a symmetric function with zero, and the 2:¢th
elementary symmetric function with (—1)'P,. In particular,

f*(c"2k+1) =0
f*(es,) = (=1)P, .

Next we consider the following commutative diagram:
U(MU) -2 U*(MSp) <~ 4* & H*(BSp)

@I q}I
UX(f) B ~
U*(BU) —> U*(BSp)— H,(MU)Q H*(BSp)

where @ is the Thom isomorphism. By definition, s, = @(cf,), so we
have E(s,) = (¢f.(7)). Let K be the subring of U*(BU) generated by
{¢f4,}s so that U*(f)|x is an isomorphism of K with U*(BSp). Now
since B is a monomorphism, it will determine the Hurewicz image of
coefficients in 4, expressing cf.(v) in terms of c¢f,(v). But F was
chosen so that @(cf,,,(7)) = su,,(w) = F(1 & (—1)iP;), thus we have the
coefficients in F'~'(E(s,)) determined recursively. The first step is
given by

PROPOSITION 3. Let p: A, ® H*(BSp) — 4, Q H*(BSp) be projec-
tion on the top dimension in A,.. Then

poF ™o E(s,) = 1R f*(ca) -

Proof. Let o': H (MU) &® H*(BSp) — H(MU) @ H*(BSp) be pro-
jection, then by Proposition 2
"o Bef (M) = 1Q f*(es) -

Thus 0o Blef.(7)) = 1Q f*(c.). Now the Hurewicz map 4, — H(MU)
is the identity, so o’ B = po FF*o @, and the proposition follows. This
formula is an explicit expression for the top dimension of Ef(s,).

2. From this information on the A”-module structure of U *(MSp),
we will construct a resolution for U*(MSp). Let £, be the unique
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element of the subring K of U*(BU) such that U*(f)(x,) = U*(f)(cf.)-
Let 2, = @(k,), so (s, — ZZ,) is an element of the kernel of E. Let
@, be the set of those partitions ® of % which cannot be written
® = (a, ), and let & = J,5,0,.

THEOREM 1. The set {(s;, — F#): B € O} generates the kernel of K
as a free A.-module.

For the proof of this theorem, we require some data on symmetric
functions. Recall the classes ¢, ¢ H*(BU), and define ¢* = Cagp® @00 " Cuy s
if «=(@,++,1,). Introduce a linear ordering, >, on the set of
partitions of k by taking the longest first and ordering lexicographically
among partitions of the same length. For every partition w of k, we
define another partition T(w) of k as follows: T(w) = (v, 4+ -+ + 7,
Ty + oo + 1, -0+, 1,), Where ¢ is the largest integer in w, and r; is
the number of j’s in w. Note that 8¢ @ if and only if T(B) = 2a.
Then the following lemmas are elementary.

LeMMA 1. There are integers m(a, B) for every pair of partitions
a, B of k such that ¢ = 3, m(a, B)cs. Moreover, m(B, T(B)) = 1 and
m(e, B) = 0 for B > T(x).

LEMMA 2. There are integers m(B, ) for every pair of partitions
a, B of k such that ¢, = >, m(B, a)c*. Moreover, m(B, T(B)) =1 and
m(B, T(V)) = 0 for v > B.

Now suppose for every partition « of |«| there is given an element
2, € Ayai—q, S0 that 3 x.s, is an operation of degree d in AY, written
in Novikov’s notation [8]. Suppose that E(3 z.s,) = 0, and that z, =
0 for |a| < k. We write p, for the projection S& 4, — S, ® 4, onto
elements of degree k in S. Now proceeding by induction on k, for
the proof of Theorem 1 it will suffice to show

ouS 75 = 0 T vsls — 7))

for some unique coefficients y, € 4.

First consider the case of odd k. For || = k odd, we have ac 6.
From Proposition 2 we have that o’ B(cf,, (7)) is zero for odd k. Thus
Ky = Z)Tl>k yacfr’ and pk(%a) = OY and lok(z masa) = lola(zllah:k xtx(sa -
#)). By Proposition 3, &k =1, so this also provides the initial case
for the induction, k& = 1.

For %k even, since E(S, x,s,) = 0 we have

OobFtoE(x,8,) =0,
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SO

m2=k 2. Q f*(e) =0,

and

I%k (-D'"g,m(a, 2v) = 0

for every v with 2|v| = k. Now by Lemma 2, these equations may
be solved uniquely for z,, @ ¢ @ in terms of z,, «c @®. Thus it suffices
to prove that the matrix indexed by a, 8€ 6, whose (a, 8) entry is
the coefficient of s, in (s, — &) is invertible. Notice that Proposition

3 implies

oul() = 3 (=), 205 e, m)s,)

Then by Lemmas 1 and 2, if the coefficient of s, is <& is nonzero,
we have » < 8. This completes the proof of Theorem 1.

We now construct the first stage of a resolution; the remaining
stages may be obtained by a simple iteration. Let C, = A” and let
C, be the free A*-module generated by {G,: 8€6}. Define d;: C,— C,
by d(G;) = s; — <. Then the following sequence is exact:

0 — U*(MSp) <2—C, <% ¢, .

There is an isomorphism Hom A7(A4Y, 4,) = 27 defined by evaluation
on the Thom class followed by the Atiyah duality isomorphism. The
gradings are nonnegative here, so we take QY rather than A,. Thus
if g;: C,— 4, is the dual of G, we have

Q7 = Hom,y (Cy 4,) 2 Hom y (C., 4,)
given by
di(y) = g@ (se — Z)W)9s -
3. At this point we may compute
EY* = Ext"(U*(MSp), 4,) = ker d; .

LEMMA 3. Let X 2%, be dual toze A_,,. Then d¥(X) = 0 if and
only if (s, — Z.)R) =0 for all we@o,.

Proof. Suppose thereisa B¢e @, |S8]| # n, such that (s, — &) (z) # 0.
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It will suffice to find ve @, with (s, — .Z)(z) = 0. Let (s; — 2\ () =
yed o,y #0,k=~0. Then there is an «, [@| = k, such that s.(y) =
0e4,. By Theorem 1, we may express s,(s; — .7 in terms of {s, —
e, so there is a ve€ 8, with (s, — .)(z) = 0.

THEOREM 2. Ey* is a polynomial ring over Z with one generator
X; wn every dimension 41 =0,

Proof. Since E¢* is a subring of Q7 given as the kernel of a
map of free abelian groups, it suffices to count dimensions. The
theorem now follows from Lemma 3.

It is interesting to note that Lemma 3 together with Proposition
3 gives an explicit criterion for the elements X; e QF. These elements
X, are polynomial generators for 237 K Q.

4. The proof of Theorem A reguires two further facts.

ProprosiTION 6. For Xe Ey*, the image [X], of X in the wn-
oriented bordism ring N, is a fourth power.

Proof. It will suffice to show that the dual Stiefel —Whitney
numbers @,(X) vanish for « =+ (v,7,7, 7). Recall [10, p. 256] that
the w symmetric function, @ ¢ @, is contained in the ideal generated
by 2 and the odd elementary symmetric funetions. Thus o, (2, is
divigible by 2, and s,(z) = 0 (mod 2) for weé@,,, and z the dual of
Xeckerd® in dimengion 4n. But for such X and o, s,(z) = ¢, (vX),
the normal Chern numbers. These reduce mod 2 to the dual Stiefel—
Whitney numbers.

¢,(VX) = 0,,.,(X)mod 2,

so for we®,,, w,,,(X)=0. Since Xe07, [X], is a square [7], so
W(X) =0 for a # (®, w). The only possible « for which @ (X) = 0
is thus &« = (v, v, 7, V).

Novikov shows that Ext;(U*(Y), 4,) is a torsion group for
s >0, for any Y [8]. Thus integral multiples of the X, are gener-
ators for @257. Moreover the E, term contains only 2-torsion, as may
be seen from [6, 8], so the multipliers are all powers of two. Recall
the generators ;€ 27, and let t* = ¢; - -+ +t; for ® = (3, -+, 9,).

PROPOSITION 7. Let X; be as in Theorem 2, with X, = >, a(w)t’ for
integer coefficients a(w). Suppose [Xl, = 0. Then there is an @ =
(Ca, 2c0) with a(w) =1 (mod 2).
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Proof. By Proposition 6 there are Y, Y'e 27 such that X, =
Y*? + 2Y7, since [Y?], is a fourth power, by [7]. Thus a(w) = 0 (mod
2) unless w = (8, 8). However if 8 contains an odd number the
symplectic Pontrjagin numbers of ¢’ are all zero for dimensional reasons.
Thus if a2a, 2a) = 0 (mod 2) for all «, the Stiefel —Whitney numbers
of X, vanish, and [X}], = 0.

THEOREM 3. Suppose Xe Q25 and [X],# 0. Then X s in the
subring of Q3 gemerated by those X, e Ey¥ c Q¥ on which all differ-
entials in the spectral sequence vanish.

Proof. Since |(2a, 2a)| = 4|«|, it follows from Proposition 7 that
[X:]. # 0 implies ¢ is even. The rest of the statement follows im-
mediately from the existence of the spectral sequence.

Now Theorem A is just a simplification of Theorem 3. It should
be noted that the map 237 — N, factors thru 2%, so any torsion ele-
ment of 257 bounds in N,. Moreover 257 ® Q is a polynomial algebra
on X;c27XQ, so for Xe 025, [X], =0 unless » = 4k. Thus the
content of Theorem A is that [257.]. = 0.

The author has been informed of some recent work of E. E. Floyd
which overlaps congiderably with the above results. TUsing very
different methods, Floyd gives a more refined upper bound for the
image of 257 in MN,.

This work formed part of the author’s doctoral thesis at North-
western University, under the direction of Professor Mark Mahowald.
A summary appeared as [9].
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