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TiLAK RAJ PRABHAKAR

Generating functions, integrals and recurrence relations
are obtained for the polynomials Z;(z; k) in z* which form
one set of the biorthogonal pair with respect to the weight
function e¢?x* over the interval (0, ©), the other set being
that of polynomials in .

A singular integral equation with Z ;7 (x;k) in the kernel
is solved in terms of a generalized Mittag-Leffler’s function
and a unified formula for fractional integration and differ-
entiation of the polynomials is derived.

It is known [7] that the polynomials ZZ(x; k) of degree = in x*
for positive integers & and Re a> — 1 are characterized up to a
multiplicative constant by the above requirements. Konhauser [8]
discussed the biorthogonality of the pair {Z;(x; k)}, {Y2(x;k)} in the
basic polynomials 2* and 2, over the interval (0, ) and with the
admissible weight function e¢*xz* of the generalized Laguerre poly-
nomial set {L2(x)}. Indeed the polynomials have several properties of
interest and Konhauser [8] obtained among other things some recur-
rence relations and a differential equation for the polynomials Z¢(x; k)
which are our primary concern in this paper. For k = 2, Preiser
[11] obtained for these polynomials a generating function, a differ-
ential equation, integral representations and recurrence relations.
Earlier Spencer and Fano [13] also used these polynomials for &k = 2.

For k =1, all the results proved in this paper reduce to those
for L2(x); in particular the integral equation (3.1) either reduces to
or contains as still more special cases the integral equations solved
by Widder [14], Buschman [1], Khandekar [6], Rusia [12] and Prab-
hakar ([10], (7 - 1)). For k = 2, the results are essentially the same
as those in [11] or [13].

2. Some properties of Z;(x3k). We now obtain a generating
function, a contour integral representation and a fractional integra-
tion formula for Z2(x;k). In §3, we need the Laplace transform
and in § 4 derive a more general class of generating functions for the
polynomials. Recurrence relations and a few other results will follow
as natural consequences. We shall freely use the closed form ([8],

(5))
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for Re «« > —1; naturally the results may be established from alter-
native characterizations of ZZ2(x;k) but such a discussion does not
seem to be of sufficient interest.

(i) A generating function. We obtain the generating function
indicated in

. : = Zi(xs k)t
2.2 ek, +1; —akt) =3,
2.2) 9 ) =0 ["(kn + a + 1)

where ¢ (a, b; 2) is the Bessel-Maitland function ([15]}, (1.8); [3],18.1
(21).
From (2.1), we have
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and (2.2) is established.
Denoting e' g(k,a +1; — a*¢t) by f(x,t) we at once find that
f(z, t) satisfies the partial differential equation

Lof of
x t—L tf=0.
e -« 3 +atf

Substituting for f(x,t) from (2.2) and equating the coefficients of ¢,
we obtain the differential recurrence relation

I'kn +a +1)
['kn +a —k +1)

v 2@ k) =n b Z3(v k) Ziaws k) 5

also obtained by Konhauser ([8], (6)) by direct calculations.
(ii) Schlafii’s Contour integral. It is easy to show that
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using Hankel’s formula ([3], 1.6(2))
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1 1 {(0+)
2.4 - t4-dt
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finally (2.3) follows from (2.1)
For & = 1, (2.8) reduces to the known result ([2], p. 269)

(©+) d
e = e e
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If « is also a positive integer than the integrand in (2.3) is a
single-valued analytic function of ¢ with the only singularity ¢ = 0.
Hence we can deform the contour into |[¢| = b|x| and the substitution
t = x w then leads to

(2.5) as Z2(xs k) = L(kn + a + 1 S (uk-1)" g7+ y—tnresD dy,
n! 2w ¢
where C denotes the circle |u| =0b. Indeed C may be replaced
by any simple closed contour surrounding the point % = 0. For
k =2, (2.5) reduces jto the integral representation by Preiser ([11],
(5.22)).
Using (2.5), it follows that

0" [mlat* Zotk(x; k) _ n!a*Z%(x; k)

o LTGn+k+a+)] T@n+a+l)

and ( o 1) [n!x“’”Zﬁ"(w;k)] _ (+DVa"Z5, (x; k)
ox* F'kn+k+a+1) F'(kn +k +a+1)

which leads to the pure recurrence relation
2.8) afZet* @ k) =(kn +a+1),Z2@;k)— (n+1)Z2,,(x; k).
For k = 2, (2.6) reduces to ([11], (5.39)).

(iii) F'ractional integrals and derivatives. We show that

i1 T(em +a +1) )
o) I'[a Z% (w3 k)] = g (g
@.7) [ 23 (@; F)] Thntatpt " @ k)

for Rea> —1 and Rep > — Re(l + ) where for suitable f and
complex g, I* f(x) denotes the pth order fractional integral (or frac-

tional derivative) of f(x) (see [10], §2).
When Re 2> 0, we write [10]

FleeZe(@; k)] = S—@%t Z:(t; k) dt
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_ I'kn +a + 1) i(*%)- gRitaty )
n ! = "rkj+a+p+1)’

hence for Re #>0 and Rea > — 1, we obtain

['(kn + a + 1) pats Z;Zl—l-/‘(x; k) .

2.8) I*[e*Zi(x; k)] = Tn+atpotl

But (2.8) may be written as

@ al . I'(kn +a + 1) g
2.9 Zn ,k = I~ a+p ZZ‘)‘}I ; ,
2.9) v @; ) I'kn + a+ p+ 1) [ @; )]

the inversion being valid for Re ¢t > 0 and the assumptions made.
Putting ¢ = —p, o’ = a + p, we obtain for Re ¢/ <0

womw aip g _ LN+ + 10 +1) put o
W ZE 5 k) = I" [o 25 (@
v R (T w25 (w5 F)]

which is (4.1) with the letters «, ¢ accented. Ignoring the accents
we can write

@ 7l _ I'(kn+a +1) e o
. I#[e= Z% (@3 k)] = o g (s b
(2.10) " 25l = r T oD " @3 k)

for Re £ <0, Rea>—1 and Re (o + p¢) > —1.
When Re ¢t =0, we write [* = I+ I and the result easily follows;
thus (2.7) is established for all complex ¢ with Re #>—Re (1 + a).

REMARK 1. When p is a negative integer say—m, then (2.7) is
written as

d m (44 a 2 . —_ ['(kn _}_ a + 1) a—m a—m
a4 Zr(wi k)] = o (a5
(dx) o 2@l = e e —m & 2@

which can also be proved by direct differentiation provided
Rea>m—1.

REMARK 2. For k =1, (2.7) unifies the results ([3], 10.12(27))
and ([4], 13.1(49)) for Laguerre polynomials.

3. A singular integral equation. We show that the convolution
equation

@.1) |, @=0 zs0vo -0 1) £ dt = @)

for Rea > —1 admits a locally integrable solution f given by
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— 7@! Sz __4)l—a—2 n by . kE T—-1
3.2) f(x) Tom+a s (x—1t) E? oy Mx—12))* I g(t) dt
provided I~ g exists for Re I>Rea + 1 and is locally integrable in
0,0),0 <2 <d < oo,

The function

(3:3) B () = 3 Rea >0

is a very special case of the generalized hypergeometric functions
considered by Wright [16] and is also expressible as a Fox’s H-
function [5]. On the other hand E;,(z) is a most natural generali-
zation of the Mittag-Leffler’s function E,.(2)([3], 18.1;[9]) and also
contains the confluent hypergeometric function F' (¢; d; 2z) ([3], ch.VI),
the Wiman’s function £, (2) ([3], 18.1(19)) and several other fuctions
as special cases. It is an entire function of order (Re a)™ and indeed
has a number of properties which may be of independent interest. A
fact of immediate interest to us is that the polynomials Z2(x; k) bear
to E¢,(x) a relation which is analogous to that which the Laguerre
polynomials L2(x) bear to the confluent hypergeometric function ,F;
evidently

(.9 Ziwih) = HELTEE B ).

As usual let
3.5) LU = fw) = | e ro)at Rep>0

denote the Laplace transform of f. Then it is easily verified that for
Ren, Rep >0,

(3.6) L[t Es, (A)°] = p~2+* (p*—N)~° Reb>0,

(.7) Litezeov; b)) = LEn+ @+ 1) e yon Rea>—1.

n ! pk'n+a+1

We next note a general result on the Laplace transform of the
r-times repeated indefinite integral as well as the » th order derivative
of a function; in fact, we observe that

(3.8) " f(p) = LI f(t)]

for suitable f, complex ¢ and p with Rep>0. Evidently both ([4],
4.1(8)) and ([4], 4.1(9)) are included in (3.8) as special cases.

We are now prepared to solve (3.1). From (3.1), (3.4) and using
([4], 4.1(20)), we have
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(3.9) Ll 2 &2 D (= o= F(p) = (o) -

For Rel>Re(a + 1), (8.9) can be written (compare with [1]) as

z _ ! E o )\ kY~n pga—ltkntatl 1A
(3.10)  f(p) = NSy {(p* =N p Ho' d(p)}

and we finally get

_ n! e p\l—a—2 Fn _a\W\E T
ﬂ@—[%n+a+n&wt) Bt yoacs (Ma—1)* I () dt

using ([4], 4.1(20)), (3.6) and (3.8).

4. A general class of generating functions. For arbitrary A,
we prove the generating relation

k i alxs "
4.1 Lot g (2 - (). Zi@s
(4.1) (=8 By o - )=3 I(kn+a+1)

From (2.1), we have
(=", &t
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For k=1, x =1+ a, (4.1) yields the well-known generating
funection ([3], 10.12(7)) for the Laguerre polynomials.
From (4.1) we obtain, on applying Taylor’s theorem

(\)a Z (s k) — 1 S 1—1)* F? —aft ~n=1q
4-2) I'kn +a+1) 2w M0 k’““< 1—t>t b

C being a closed contour surrounding ¢ = 0 and lying within the disk
[t] < 1. Putting u = 2*/1—¢,

(4.3) 2 F Z2 (w3 k) = I'kn + « —1— 1) S W B o (0 —u) du
Em o (= o

where C’ is a circle |u — «*| = p of small radius p.
Choosing A = 1, we have in terms of Wiman’s function
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(4.4) Zi(x; k) =

I'kn + a + 1) S U By gur (@F—u) du
n! 27w o (u — gF)+

Also evaluating the integral (4.3) by the Cauchy’s residue theorem,
we obtain for arbitrary » with Rex > 0,

Lke + o+ 1) pw; 9
M\ m! our

Since E?, (2) = A/'(b))e?, for k=1 and »=a + 1, (4.5) reduces to the
Rodrigues for the Laguerre polynomials.

(4.5) Z5(x; k) = (2 A (R )

I am grateful to Professor U. N. Singh for his encoragement and
interest in this work.
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