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Each identity in a group or in a quasigroup induces a
generalized identity (functional equation) in a class of quasi-
groups. Generalized associativity, generalized bisymmetry and
generalized distributivity are examples of such generalized
identities. From the left Bol identity

χ(y{xzί) = (x(yx))z

on a quasigroup, we obtain a generalized Bol identity on a
class of quasigroups:

A^x, A2(y, As(x, z))) = A4(A5(x, A6(y, x)), z),

where the At

9s are quasigroup operations on a set Q. The
general solution of this generalized Bol functional equation
is obtained by reducing it to another functional equation

P(x, y + S(x, zj) = P(x, y + a(x)) + z

where P and S are quasigroup operations on Q and a(x) = S(x, 0).
If the operations in the last functional equation are con-
sidered on real numbers (or groups), then the solution of this
equation is obtained.

One of the most important identities considered in the theory of

quasigroups is Bol identity. A loop Q( ) isc ailed a left Bol loop [2]

if the following identity

(1) x(y(xz)) = (x(yx))z ,

holds for every x,y,zeQ. The identity (1) is called the left Bol

identity. The right Bol identity is defined analogously

(2 ) ((zx)y)x = z((xy)x) .

For more information of algebraic properties of Bol loops, see for
example [4]. If a loop is both a right and a left Bol, then it is a
Moufang loop, i.e. one of the following Moufang identities are satis-
fied:

(3) x(y(xz)) = ((xy)x)z ,

(4) {{zx)y)x = z(x(yx)) .

It is easily seen that (3) is a particular case of (2) if Q ( ) satisfies

the elasticity law (xy)x = x(yx)9 then (1) implies (3). On the other

hand the left Moufang identity (3) does not imply (1), see for example

[3].
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Each identity in an universal algebra defines a generalized identity
which is obtained from the given identity by replacing operations of
the same arity (number of variables) by different operations of the
same arity. Generalized associativity A^A^x, y), z) = AB(x, A^y, z)),
generalized bisymmetry A1(A2(xJ y), A3(u, v)) = A^A^x, u), A6(y, v)),
generalized distributivity A^x, A2(y, z)) = A3(A4(x, y), A5(x, z)) are
examples of such generalized identities. These identities considered
as functional equations were studied by many authors, for references
see [1].

To the left Bol identity (1) corresponds the generalized Bol (left
identity):

( 5 ) A,{x, A2(y, Az(x, z))) = A4(A6(x, A6(y, x)), z) .

The corresponding identity for the right Bol identity is

( 6) BάBάBfc, x), y), x) = B4(z, B5(BG(x, y), x)) .

Of course all operations Aiy Bβ{i,j = 1, 2, , 6) in (5) and (6) are
defined on the same set Q.

We shall consider the equations (5) and (6) on quasigroups, that is,
we assume that all A{ and Bά are quasigroups (quasigroup operations).
In the next sections, we reduce the equation (s) to a simpler one con-
taining two quasigroups and one loop, and we give a full solution of this
equation under some suppositions. For the definitions and results on
quasigroups and loops, see for example [2], [3].

2* We shall use the following notations. Let A be a binary
operation defined on the set Q. We denote the translations of A by

(7) LA(a)x = A{a, x) , J24(α, x) = A(x, a) .

If A is one of the operations At {i — 1,2, « ,6) from (5) then we
shall write L^a) instead of LA.(a) and moreover, if a is a fixed
element k of Q, then we shall write Li instead of Li(k). Similar
notations are used for right translations.

Let 0 be a fixed element of the set Q. We denote by LA(0) = L,
EA(0) = R and

(8 ) x + y = AiR-'x, L~ιy) .
A

Then Q( + ) is a loop [3] with the neutral element A(0, 0) = 0 .̂
A

Let all the operations in (5) be quasigroup oparations. Then L/s
and Ri's are permutations of Q. If x = k in (5), then from (7), we
have

, L,z) = A,{L,RQy, z) ,
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that is,

(9 ) A<(y, z) = LxA2{R?L?y, LZZ) .

Using (5) and (9), we have

(10) Aλ(x, A2(y, Az(x, z))) = L.A^R^L^A^x, A*(y, x), L3z).

With z = k in (10), we get using (7),

(11) Λ(x, A2(y, R3x)) = LJRΊRϊ'L^Aiix, AQ(y, x)) ,

where Rr

2 = R2{LJή. From (10) and (11), we obtain

(12) Lr'AAx, A2(y, A*(x, z))) = A^R^L^A^x, A2(y9 R&)), Lzz) .

Let

(13) Cfay) = LrΛίαj,!/) .

Now (12) and (13) yield,

Cx{x, A2(y, A3(x, z))) = ^ ( i ί o " 1 ^ ^ , A2(y, R^x)), L3z) ,

that is,

<14) Ct(xf AlR'2-'y, R3R^A3{x, z))) - A^R^C^x, A^R'^y, R&)), L,z) .

Let

(15) C2(x, y) = A2{R'2-
ιx, R,y) , C3(x, y) - R?Az(x, L^R.y) .

With the help of (15), (14) can be rewritten as,

C&, C2(y, C3(x, RΐιL,z))) - C2(C,(x, C2(y, x)), R^L3z) ,

that is,

(16) C,(x, C2(y, CB(x, z))) = C2{Cx{x, C2(y, x)), z) .

From (13) and (15), it follows that C19 C2 and C3 are quasigroup
operations on Q, since Lx, L3, R3 and R2 are permutations of Q.

As every quasigroup is isotopic to a loop [3], we can assume
that C2 is isotopic to a loop, that is, C2 satisfies

(17) C2(x, y) = Rx + Ly , where R and L are as in (8) .

Then Q( + ) is a loop. By (17), (16) becomes,

C^x, Ry + LC3(x, z)) = RC^x, Ry + Lx) + Lz ,

that is,

(18) C^x, y + LC3(x, z)) = RC&, y + Lx) + Lz .
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Now define

(19) P(x, y) = C&, y), S(x, y) = LC3(x, L~ιy) .

Evidently P and S are quasigroup operations on Q. Using (19), we
obtain from (18),

P(x, y + S(x, Lz)) = RP(x9 y + Lx) + Lz ,

that is,

(20) P(x, y + S(x, z)) = RP(x, y + Lx) + z .

Putting z = 0 in (20), we have

P(x, y + S(x, 0)) = RP(x, y + Lx) ,

and thus, we get

(21) P(x, y + S(x, z)) = P(x, y + a(x)) + z ,

where a(x) = S(x,0).

Hence from (9), (13), (15), (17) and (19), results

' A^x, y) = L&ix, y) = LJ?(x, y)

A2(xf y) = C2{R'2x, R^y) = RRr

2x + LR^y

I A3(x, y) = R3C3(x, R$ιLzy) = R3L~lS(xf LR3

lLzy)

. A4(x, y) = Lj.AziR^L^x, L3y) = LJJRR^L^x + LR^L^y) ,

where P and S satisfy (21).
With L, = 0, JBJR£ = λ, Liϊs"1 = μ, L3 = ψ, R'2RiιLΐι = ^, (22) can

be rewritten as,

(23)

( A,(x, y) = φP(x, y)

A2(x, y) = Xx + μy

Az(x, y) = μ-'Six, μfy)

{ A4(x, y) = φ(Rθx + μfy) ,

where P and S satisfy (21) and φ, λ, μ, ψ, R and θ are permutations
on Q.

From (11) and (23), we obtain

thus

(24)

Ai(ίc, A2(i/, R3x)) = ^P(x, λ̂ / -

= φP(x, Xy + Lx)

also = ^5A5(a;, Aβ(i/, aj)) ,

Aδ(x, AG(y, x)) = θ~xP(x, Xy + Lx) .
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Thus we have proved a part of the following,

THEOREM 1. Let Q be an arbitrary set. Let A{ (i = 1, 6) be
quasigroup operations satisfying (5). Then all the solutions of the
functional equation (5) are given by (23) and (24) where φ, λ, μ, ψ,
R, a, θ and L are arbitrary permutations of Q, the loop operation
+ and the quasigroup operations P and S satisfy (21). Conversely
the AiS (i = 1, 2, , 6) given by (23) and (24), where P and S satisfy
(21), satisfy the generalized Bol equation (5).

By a straight forward computation, it is easy to verify the con-
verse part.

REMARK 1. The solutions of the right Bol functional equation
(6), can be obtained from (5), by replacing all the B/s in (6) by the D/s
where

Ate, V) = Bay, x) .

REMARK 2. The generalized Moufang functional equation

Λte, A2(y, Az(x, z))) = A,{Ab{AQ(x, y),x), z)

can also be reduced to (21). In that by the same computation, we
obtain (12), from which (16) and finally (21). All the solutions are
similar to (23). Only difference is (24), where instead of (24), we get

A5(A6(x, y), x) - θ-'Pίx, Xy + Lx) .

3* As we have seen in §2, the solution of the Bol functional
equation (5) is reduced to that of (21). Let us now consider this
equation (5) on the set of real numbers R and let us suppose that
Q( + ) is the additive group of real numbers. So, we have to consider
(21) on R.

Letting S(x, z) = t in (21), we get, using S as a quasigroup
operation

V + t) = P(a?, y + a(x)) + S-\x, t), x,y,teR,

where a(x) = S(x, 0). Thus, we obtain

(25) Xx(y + ί) = μx(y) + vx(t), for all y, t e R ,

where

(26) Xx(u) = P(a;, u), μx{u) = P(x, u + a(x)), vx{u) = S~\x, u) .

Equation (25) is the well known Pexider equation. Hence there exists
an additive function Ax on R satisfying
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(27) Ax(u + v) = Ax(u) + Ax(v) ,

for all u9veR, such that

(28)

' Xx(u) = C(x) + Ax(u) ,

μx(u) = b (x) + Ax(u) ,

, vx(u) = d(x) + Aβ(u) ,

where b(x), c(x), d(x) are constants depending on x with c(x) ~
b(x) + d(x). With the notation

(29) F(x, u) = Ax(u) ,

we obtain from (26), (28) and (29),

(30) P(x, u) = c(x) + F(x, u) ,

(31) S-\x, u) = d(x) + F(x, u) ,

where F is additive in the second variable for each fixed x. From
(30), we see that F is a right quasigroup, that is,

(32) F(a, x) — b, has a unique solution for all α, b.

If in (31), we put S" 1^, u) = w, then we have

d(x) + ί7^, %) = w ,

S(x, w) — u .

Thus,

(33) S(α, d(a?) + jP(a?, u)) = u .

Since S(x, 0) = α(a?), we have S"1^, α(a?)) = 0. Thus, from (31) with
u = α(#), we get d(x) = F(x, —a(x)), using F additive in the second
variable. Hence (33) becomes

S(x, F(x, u — oc{x))) — u ,

that is

S(x, F(x, y)) = y + a(x) ,

from which follows using (32),

(34) S(x,y) = a{x) + F~\x, y)

Therefore, we have proved the following :

THEOREM 2. Let <?( + ) be the additive group of real numbers.
Then the general solution of (21) is given by (30) and (34) where
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F is an arbitrary right quasigroup which is additive in the second
variable and c(x) and a(x) are arbitrary functions. Conversely if
P and S are given by (30) and (34) with F additive in the second
variable, then (21) holds.

The converse part can be obtained by easy computation.

REMARK 3. In order for P and S to be quasigroups, we need
the following conditions on C(x) and a(x); C(x) + F(x,a) = b and
a(x) + F~ι(x, a) = b should have unique solutions for given a and b.
But if we require only P and S to be right quasigroups, then we
do not need these conditions and the solution of (21) is given by (30)
and (34) for arbitrary C(x) and a(x).

REMARK 4. If we take P to be monotonic in the second variable,
then from (27), (29) and (30), we see that Ax(u) is continuous and,
for Ax Ξ£ 0, Ax(u) = l(x)u, for arbitrary l(x). Hence P(x, u) = C(x) +
l(x)u and S(x, u) = a(x) -f- u/l(x).

REMARK 5. Instead of the additive group of real numbers, we
can take an arbitrary group and consider the Pexider type equation
on this group. The general solution of (21) is given by (28) and
hence by (30) and (34). But the constant functions c(x), b(x) and
d(x) in (28) should be written in a proper way [5].
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