
Pacific Journal of
Mathematics

ALMOST SMOOTH PERTURBATIONS OF SELF-ADJOINT
OPERATORS

JOHN BEN BUTLER, JR.

Vol. 35, No. 2 October 1970



PACIFIC JOURNAL OF MATHEMATICS
Vol. 35, No. 2, 1970

ALMOST SMOOTH PERTURBATIONS
OF SELF-ADJOINT OPERATORS

JOHN B. BUTLER, JR.

Assume H° e <&($) is a self-adjoint operator with spectrum
on [o, co) and that E\Δ) e &{&) is the spectral measure deter-
mined by H°, Δ c [0, co). Let H1 = H° + V where V = B- A and
A,Be&($) are commuting self-adjoint operators. In this
paper T. Kato's concept of smooth perturbations is generalized
in the following way: H1 is said to be an almost smooth
perturbation of H°, except at 1 = 0, if A, B are smooth with
respect to H°E°(Δm) for all intervals Δm = (1/m, oo), m ^ 1. It
is proved that the time independent wave operators correspond-
ing to H°, Hι exist when the assumption that H1 is smooth
with respect to H° is replaced by the assumption that H1 is
almost smooth with respect to H°.

The concept of smooth perturbations was introduced by T. Kato
in [2]. The importance of the generalization given here is that it
allows one to apply the theory developed in [2] to certain one dimen-
sional differential operators which are almost smooth but not smooth.
Examples of some almost smooth ordinary differential operators are
given below in § 3.

2* The wave operators* Let Ω± denote the upper and lower
complex plane, with the reals excluded, and let / be a function on
β ± x § into φ. Such a function / is said to be in the Hardy class
22"2((—°o, °°): Φ) if and only if / is analytic in λ for all XeΩ± and

for all ue£,<5> 0, J" ||/(1 ±iδ;u)\\2dl ^ P\\u\\2 for some P > 0 in-

dependent of u and δ. An operator i e ^ ( @ is said to be smooth

with respect to H° if and only if the function / defined by

(λ, u) h^ A(H° - Xl)~ιu = AR\X)u is in H2((~ oo, oo): §)

[2, p. 260].1] Now we shall make the following assumptions regard-
ing H°, A, B:

( i ) For some N, \\BR\X)E\Am)A\\ ^ K < 1 for m ^ N and for
all λ not real positive or zero.

(ii) H1 = H° + BA is an almost smooth perturbation of H°. It
will be shown below that these two assumptions insure the existence
of the wave operators in the time independent form. With additional
assumptions, one may also show that these operators coincide with

!> Actually T. Kato defines smoothness for more general operators than those
considered in this paper.
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the wave operators defined in the time dependent manner. For this
purpose we shall also assume:

(iii) For some λ0, Im(λ0) Φ 0, the operator |F|1/2β°(λ0) is an in-
tegral operator with kernel in the Schmidt class.

Let RP(X) G ̂ ( φ ) denote the resolvent operators corresponding to
the operators Hp, p = 0, 1 (in formulas involving both H°, H1 we
shall use p, q = 0,1, p + q = 1).

LEMMA 1 (T. Kato). Let A, B be smooth with respect to H° and
let (i) hold. Then for, 1 e [0, oo), δ > 0, p = 0,1 R\l ± iδ) is defined
in terms of R°(l ± iδ) by

R^l + id) = R°(l + iδ)
(2.1) " ""

- i2°(l ± iδ)B(l + Q(l ± iδ^-'AR^l ± iδ)
where Q(λ) - Aie°(λ)B.

Proof. The proof is given in [2, p. 263]. Note that formula
(2.1) is essentially the Neumann series for the resolvent since by as-
sumption (i) ^7=Q( — 1)VQV is norm convergent and

LEMMA 2 (Γ. Kato). Let A, B be smooth with respect to H° and
let (i) hold. Then for ue$,le [0, oo), δ > 0, p = 0, 1:

1. The vectors Aiϋ^l ± iδ)u, BRP(1 ± iδ)u have limits along the
reals δ —» 0 in φ.

2. J/ AJ2P(1 ± ίθ)u, BRP(1 ± iθ)u denote the limits ARP(1 ± iθ)u =
limδ_o ARP(1 ± ίδ)u, BRP(1 ± iθ)u = lim^o BRP(1 ± iδ)u then ARP(1 ±
iθ)u, BRP(1 ± i0)ueL2([0, oo): §).

3. If Q = sup,,m ||J5i2°(λ,)JS?0(^m)A||, Im(λ) Φ 0, m ^ JSΓ,

± iθ)w||

Proof. [2, p. 264]. Note that in general the expression iϋ^l ±
iϋ)u does not make sense. The uniform bound | |Q | | exists by the
principle of uniform boundedness.

THEOREM 1. Let A, B be smooth with respect to H° and let as-
sumption (i) hold. Then the spectral measures EP(A) corresponding
to the operators Hp, p = 0, 1 are given by
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(Ep(Δ)u, v) = (Eq(Δ)u, v)

l ± ίO)ABIm(Rq(l ± iθ))
7Γ JΔ

(2 2)
+ Im(Rq(l ± iO)BAR*(l T iθ)}u, v)dl

({( ± iO)ABIm(Rq(l + iO))BAR*(l =F iθ)}u, v)dl
π U

where lm{Rv{\)) = (l/2ί)(Rp(X) - Rp(λ)), u, ve £, Δ S [0, oo).

Proof. Lemma 2 implies that the terms in the integrand are
well defined. The integrands are absolutely integrable functions on
[0, oo) because of the hypothesis that A, B are smooth with respect
to H\

To see this consider the integral

(2.3) ( |12*(1 + iO)BARq(l - iθ)u, v)\dl .

By the Schwarz inequality (2.3) is dominated by

(2.4) ( || ARq(l + iθ)u\\2dl\ \\BR*(1 - iθ)v\\2dl .

By Lemma 1,2 the product is less than

Therefore

(2.5) \\(R'(1 ~ iO)BAR*(l + iθ)u,v)\dl ^ p2(l -

for all J S [0, oo). The integral (2.3) corresponds to the first term
in the integral on the right of (2.2). Bounds may be found for the
integrals of the other terms of (2.2) similarly.

From the second resolvent equation jβ^λ) = JB°(λ) -
one may derive the identity

(2.6)
(1 + (-1)*R*(1 ± id)AB)Im(Rq(l ±ίδ)(l + (-l)*BAR*(l+iδ)

for all l e [0, oo), 3 > 0. Also it is known [2, p. 273] that

(2.7) {Ep{A)u, v) = lim — ( (Im(R*(l ± iδ))u, v)dl .
δ-+0 7C JΔ

Employing (2.6), (2.7) and passing to the limit δ—>0 leads to (2.2).
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THEOREM 2. Let A, B be smooth with respect to H° and let as-
sumption (i) hold. Then the time independent wave operators Wl,
p = 0,1 are determined by

(Win, v) = (u,v) + (-ΐ)*
(2.8) π Jo+

{A Im(Rq(l ± iθ))u, BRP(1 ± iθ)v)dl

for u,ve$,p + q = l.

Proof. By Lemma 2 the integrand in (2.8) is well defined and
it is absolutely convergent by the hypothesis that A, B are smooth
with respect to H°. It is proved in [2] that Wl are in general re-
presented by

(2.9) (Wlu, v) = (u, fl)±(-l)*-L(" (AR*(1 ± iθ)u, BRP(1 ± iθ)v)dl .
2πij

The integral appearing on the right side of (2.9) determines a bounded
operator XI and (Xζu, v) may be written

(2.10) (X*u, v) = l i m ( ± ) — [° (Rp(l T iδ)BARq(l ± iδ)u, v)dl .
δo 2πij

Since we have assumed that the spectrum of H° lies on [0, oo) it
follows using Lemma 1 that RP(X), p = 0,1 are regular in λ if λ is
not real positive. Therefore the part of the integral (2.10) which is
along the negative real axis may be deformed and

(Xlu, v) = lim Γ(±)-i_( (R*(l + id)BARg(l ± iδ)u, v)dl
δ-><> L 2πijo+

(2.11) ( ± ) — (°° (Rp(l T iδ)BARq{l + iδ)u, v)dl\
2πiJo+ J

(
2πiJo+

= lim — [" (Rp(l + iδ)BA Im(Rq(l ± iδ)u, v)dl .
δo 7Γ J +

Using (2.11) formula (2.9) reduces to (2.8).

COROLLARY. Then wave operators are also given by

Wi(u, v) = (u, v) + ( —l)qr-H
(2.12) π J o +

± iθ)u, Blm(Rp(l ± iθ))v)dl

for u,ve§,p + q = l.

Proof. The proof is similar to the proof of the theorem.



ALMOST SMOOTH PERTURBATIONS OF SELF-ADJOINT OPERATORS 301

THEOREM 3. Let A, B be almost smooth with respect to H° and
let assumption (i) hold. Then:

1. The equation

(Wϊu,v) = (u, v) + (-1)*-1(
(2.13) π J o +

(A Im(Rq(l ± io))u, BRP(1 ± iθ)v)dl

defines operators Wle &(&), P = 0, 1 such that WlWl = 1 and

(2.14) WϊH*Wl = H* , p = 0

2. If in addition assumption (iii) ΛoMs ί/̂ βw Wl coincide with
the wave operators defined by the time dependent method.

Proof. Consider a sequence of operators HI where HI = H°E°(An),
An = (1/n, oo), ̂  ^ 1. Let i ί i be the sequence such that HI = HI +
I? A, ^ ^ 1. By hypothesis A, B are smooth with respect to HI for
all n ^ l . If iZϊ(λ) = {Hi — λl)" 1 then by assumption (i) we may
choose N such that for n^ N, \\BR°n(X)A\\ ^ K < 1 for all λ which
are not real positive or zero. Applying Theorem 2 the wave operators
Wl{n) corresponding to Hi exist and are given in time independent
form by

(W&n)u, v) = (u, v) + (-1)*JL
(2.15) π

l ± iθ))u, BRζ(l ± iθ)v)dl .

The operators Wl{n) are in &{$) and satisfy Wl{n)Wl{n) = I,
p + q = 1 and

(2.16) TΓί(w)ieί(λ)T7ί(n) = i2ϊ(λ)

for all λ, Im(λ) Φ 0. Also if El(Δ), A g [0, oo) are the spectral meas-
ures of fίj then El{A)Wί{n) = Wί(n)El{Δ), A S [0, oo), which follows
from (2.16). The operators TFί(w) agree with the wave operators
defined in terms of Hi in the time dependent manner [2, p. 271] and
they satisfy \{Wi{ri)u, v)\ ^ 11^(^)^1111^(^)^11. Formula (2.15) may
be written

(2 17) { m { n ) u ' v) = ( " J v) + ( "

± i0))Eq(An)u, BRP(1 ± i0)Ep(An)v)dl .

Now consider the expression Zn(u, v) defined by

Zn{u, v) = (E'(Δn)u, v) + ( - ! ) * — Γ
(2.18) π J l / % +

, BRP(1 ± iθ)v)dl .
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To see that the integral in (2.18) is well defined write

Rp(χ) = S*(X) + jRl(λ) where 22£(λ) - Rp(X)Ep(Am)

and

The operator S£(X) is regular in λ for λ e (1/n, oo), m > n. By hypo-
thesis A, 5 are smooth with respect to Hi. Applying Lemma 2,

lim ARP(1 ± iδ)u = AS*(ΐ)u + AR£(1 ± iθ)u e § ,
<5-»0

lim BRP(1 ± iδ)u = BS>(l)u + BRZ(1 ± iθ)u e φ, 1 e (ljn, oo)
δ—>0

and the integrals

Γ ||ASi(l)ΐt||"dl, Γ \\ARl(l±io)u\\2dl,
Ji/» Ji/w

| | ( ) | |
Jl/Λ Jl/»

are convergent. Therefore the integral in (2.18) is absolutely con-
vergent by the Schwarz inequality. Writing Zn(u, v) in the form

1 f°°
Zn(u, v) = lim — I

(2.19) δ~*° π ^lln+

(((1 + ( - 1 ) ^ ^ ( 1 ± iδ)BA) Im(Rq(l ± iδ))u, v)dl

by (2.5) and applying (2.6) one obtains

S CO

((1 + (-iyBARq(l ± iδ))u, lm(Rp(l =F iδ))v)dl .

This implies, again by (2.5),

Zu(u, v) = (u, E»{AM + ( - l ) ^
(2.21) π

{BARq{l ± iθ)u, Im(Rp(l + iθ))v)dl

Now because of the regularity of Sζ(l) for l e (1/n, oo) and 12;(1) for
1 G (0,1/ri) we have Im(i2ϊ(l ± ίθ))u = 0 for 1 e (0,1/w) and

Im(iί;(l ± iθ))u = Im(jRp(l ± ίθ))u ,

for le(l/n, oo). Using these relations it follows from (2.17), (2.18),
(2.20) that Zn(u, v) = Zn{Eq{An)u, v) = Zn(u, Ep{An)v) and also

Zn(u, v) = (WZ(n)Eq(An)u, E*{An)v) = (WZ(n)u, v) .
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Since

Zn{u, v) = (Wl(n)u, v), \Zn{u, v)\ ^ \\E*{An)v\\\\E«(An)u\\ ,

the sequence Zn(u, v) converges to the right side of (2.13) and defines
an operator Wζe &(§). The operators jRS(λ) converge strongly to
RP(X), Im(λ) Φ 0, the operators Wl{n) converge weakly to Wl, n—>oo,
and Wl(n)Wl = I, Wl{n)Rl(X)Wq

±{n) = Rζ(X), n ^ 1. From these re-
lations it follows that the first part of the conclusion of the theorem
is valid.

If the hypothesis of part 2 of the theorem holds then the wave
operators corresponding to Hp exist as defined in the time dependent
manner [1, p. 546]. Let us denote these wave operators by Wl. It
is easily seen that Wl{n) converge strongly to Wl. Since Wl(n)
also converge weakly to Wl it must be that Wl = Wl and the
operators defined in the two different ways coincide.

COROLLARY. The conclusion of Theorem 1 holds if the assump-
tion that Hι is a smooth perturbation of H° is replaced by the as-
sumption that H1 is an almost smooth perturbation of H°.

The proof proceeds along the same lines as the proof of the
theorem.

3* Application to ordinary differential operators* To apply
Theorem 3 consider a self-adjoint operator H° on L2(— oo, oo) which
is determined by the formal ordinary differential operator

Lo = (-l)v(d/dx)n,n = 2v ,

defined on (— oo, oo). The resolvent R°(λ) = (H° — XI)-1 may be ex-
plicitly calculated. Let λ, w be complex variables defined by

λ = reiθ, w = rίln exp(ίθ/n), r ^ 0, 0 ^ θ < 2π ,

and define functions s)(%, X) = exτβ(e3 wx)9 j — 1, , n where eά, j =
1, * ,n are complex roots of unity with increasing argument

(3.1) - | ^ ^

The functions s°j(x, λ), j = 1, ...,n form a fundamental set of solu-
tions of the equation Loy = Xy, — oo < ,τ < oo. The resolvent E°(λ)
is an integral operator whose kernel is the Green's function

(3.2) G°(x, y: X) - ^ — Σ eksl(x, X)sl-V(y, X)
nw k i
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for x |Ξ> y with variables x, y interchanged if x < y. The kernel of
the spectral measure E\Δ) associated with H° is given by

&°(x, y: Δ) = l i m — ί Im(G°(x, y:l + iδ)dl .

More precisely and explicitly with Δι = (Δ)lln, sn = 1

E\Δ)u = ±Λ Σ Γ
/gβg\ 2τcι J^i k^v+ι j-oo

{eA exp [βA8(a? — #)] — βA exp[eAs(α? — y)]}u(y)dyds

for w G L2(— oo, oo), // g [0, oo). Suppose that A, B are real multiplica-
tion operators An = fz(x)u, Bu = f^u, where

l , / 2 e i>2(— °°> M ) j i J 2 G C(— oo, oo) .

Then the differential operator Lι = L° + (/i(^)/2(^)) determines a self-
adjoint operator H1 = H° + B A on L2(—00,00). To show H1 is
almost iϊ° smooth, but not H° smooth we must show

(3.4) ("(" \Mx)(R°(l ± iδ)E°(Δm)u)(x) \2dxdl ^ P{Δm)\\u\\ , i = 1, 2
Jθ J-00

where J m is any interval J m = (1/m, 00). Since

iC(λ) = R\X)E\Δm) = Γ (1, - λ ) - 1 ^ 0 ^ )
Jl/m

is regular for λ real 0 < λ <; l/2m equation (3.4) follows if

S
oo ί oo poo 2

l/2wj-oo J-oo

i = l ,2

for all m ^ 1. Employing (3.2) it turns out (3.5) holds with

, + 2 | f ,/
i=l,2 \J-oo

and (3.4) with

P(Δm) = P , ^ ) + max((~ ^ώ?) .
ΐ = l,2 VJ-o /

Now assume that the functions fx,f2 satisfy the following conditions:
(a) fi(x), gi(m : x) e C(— oo, oo) π Lx(— oo, oo) n L2(— oo, oo) and

J ^ ^ J ^ ) < l
where
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feo foo

fi+i = \ fidx, 9i+i = \ Qidx , % = 3, , n ,

g2(m : x) = E°(Λm)f2u, f* = (\ fϊdxy, g3 =

for any u e C°°(— oo, oo), || u \\ < 1,

< oo(b) Γ Γ |/1(a;)/1(y)G9(ίc,i/:λo)|
id!κi»

J_ooJ_oo

for some λ0, Im(λ0) Φ 0. Assumption (i) is valid if there exists N
such that

(3.6) \" A(x) Γ G°(x, y: X)g2(m : y)dy
J —oo J —oo

dx ^ K < 1

for m^ N and all λ not real positive or zero. Integrating by parts
(n — l)-times (3.6) is equivalent to

(3.7) S oo dx ^ K < 1 .

Inspection of (3.2) shows \dn"1G°/dyn-1\ <£ 1 for all x, y and λ not posi-
tive real. Therefore (3.7) holds if

(3.8)

Since E\Am)f2n = g2(m : x) converges to f2(x)u, n —> oo, in the L2(— ̂ , oo)
norm it follows, using (α), that there exists iV such that (3.8) holds
for m ^ N. The assumption (b) implies that the operator |F|1/2i2°(λ0)
has a kernel in the Schmidt class. Therefore when (a), (b) hold the
wave operators exist corresponding to L°, L1, as a consequence of
Theorem 3.

Similar results to those stated above apply to the differential
operator L° = —(d/dx)2 defined on [0, oo) with the boundary condition
u'(ϋ) = 0 imposed at x = 0. In this case we assume that f19f2 are
such that

JlJ J21 JSJ 921 9z

are in C(0, oo) η Lx(0, oo) η L2(0, oo) and

dx) < 1 .

Again L1 = L° + (/2(ίc) #/i(^)) is almost smooth but not smooth with
respect to L° [3, p. 381].
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