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Suppose X and Y are topological vector spaces. This
paper gives an analytic representation of continuous linear
operators from C into Y, where C denotes the space of con-
tinuous functions from the interval [0, 1] into X with the
topology of uniform convergence. In order to obtain an
integral representation theorem analogous to the ones given
by R. K. Goodrich for the locally convex setting in Trans.
Amer. Math. Soc. 131 (1968), 246-258, certain strong hypotheses
on C must be assumed because of the need to be able to
extend the operators to a subset of the double dual of C.
However, by using the notion of ^-integral, it is possible to
avoid this problem and give a representation theorem without
additional hypothesis.

Let ^ be the collection of intervals in (0, 1] of the form (a, b]
and let L[X, Y] denote the space of linear operators from X into
Y. Then the set function K from ^ into L[X, Y] is said to be
convex with respect to length if K{I) = Σ?=i Wi)β(I)W(Ii) whenever
I = U?=i In a n ( i where 1(1) denotes the length of /. If K is convex
with respect to length, then K is said to be ^-integrable with

respect to / if \imlσl_Q ^ K(Ii)(^if) = v\Kdf exists in Ϋ, the com-
pletion of Y (by ΔJ we mean f(ti+1) — f(U) where {Q is the parti-
tion σ of [0, 1]).

If Ie £f, with endpoints a and 6, then the function Ψz defined
b y Wj(t) = 0 f o r t ^ a, Ψj(t) = (t - a)/(b -a) f o r a ^ t ^ b , a n d

Ψj(t) = 1 for t ^ 6, is called the fundamental function associated with /.
A set function K whose domain is ^ and whose range is in L[X, Y] is
said to be quasi-Gowurin if given a neighborhood V of θγ, there is a
neighborhood U of θc such that Σ ^ ^ G u i m P l i e s Σ [iφ;)](^) e V.

Finally, if fe C and σ is a partition of [0,1], then pfσ denotes
the polygonal function determined by σ and /.

2* The representation theorem* Let Cθ denote the subspace
of C such that /(0) = θz.

THEOREM 2.1. Suppose K is a set function on ^ with values
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in L[X, Y] which is convex with respect to length and which is

quasi-Gowurin. Then T(f) = v\Kdfis a continuous linear operator

from CQ into Ϋ.

Proof. First we show that v\κdf exists in Ϋ for each feC0.
Suppose V is a neighborhood of θγ. Since K is quasi-Gowurin, there
is a neighborhood U of θc such that Σ ΨI.^xie Uimplies Σ [-*Φi)]0&<)
is in V. Since pfσ converges to / in the topology of uniform con-
vergence, there is a δ such that \σ1\, \σ2\<δ implies pfσi — pfσ2e U.
Let σ^σ2 denote the common refinement of σx and σ2. It follows
from 7.2 in [1] that

(*) Σ σ i [KimiAJ) - Σ, 2 [KilMVsf) = Σ ^ 2 [K{Ik)}{Ak{pfσι - pfO2)) .

Since ΣFiκ-Vκ(Pfo, - J>Λ2)) - p/^ - pΛ.e C/, then it follows that (*)
is in V from which we conclude that {Σjσ[K(Ii)](Aif)}σ is Cauchy.
Hence, v\Kdf exists in Ϋ. Suppose fa—+f in Cβ. Suppose V is a

neighborhood of θγ. Then there is a neighborhood V of θγ such
that V + V + F ' c F. Since 1£ is quasi-Gowurin, there is a
neighborhood ί7 of ΘG such that Σ ^ / Γ ^ G ^ t h e n ΣTO)](*<)6 V.
There exists a neighborhood E/' of (9c'such that U' + Z7' + i7 'c J7.
Since /α converges to /, then, there is a β such that a > β implies
fa — /e Z7'. Suppose a > β. Then there is a δ such that | σ | < δ
implies each oΐ p(fa)σ-fae U', f-pfσe Ό\ v^Kdf-^XK{I^\{AJ)^ V\
and Σσ[^(iί)](^/«) ~ ^Jî rf/e F\ Then,

β = v^Kdf-

However,

Σ α ^ ί^σ-Λ)) = Pfa - ί>(/Λ = (Vfa-f) + (/"/«) + (/α - P(fa)σ)

which is in U'+ U'+ U'czU. Hence Σα[^(i<)](Λ(/-Λ))e F', from

which it follows that v\κdf - v\κdfae V + V + F ' c F. There-

fore, iMiM/tt converges to 'ylίΓrf/, and hence T is continuous.

THEOREM 2.2. Suppose T is a continuous linear operator from
Cθ into Y .Then there is a set function ^ with values in L[X, Y]
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which is convex with respect to length and quasi-Gowurin such that

T(f) = v^Kdf for each fe Co.

Proof. Define K from ^ into L[X, Y] by [K(I)](x) = T(Wrx)f

x e X. Then K is convex with respect to length because T is linear
and because of the manner in which fundamental functions combine.
Suppose 7 is a neighborhood of θγ. Since T is continuous, there is
a neighborhood U of θc such that T(U) c V. Therefore Σ ? V ^ G U

implies Σi[K(Ii)](xi)=T(ΣiΨIi xi) e V, which implies K is quasi-Gowurin.
Suppose fe Cθ. Since pfσ converses to / in Cθ, then

T(f) = limlσl T(pfσ) = Km,.,

= limlσl

The last equality follows from 2.1. The theorem is established.

COROLLARY 2.3. Suppose Y is complete. Then, T is a continu-
ous linear operator from C into Y if and only if there is an
element μ e L[X, Y] and a set function on ^ with values in L[x, y]
which is convex with respect to length and quasi-Gowurin such that

T(f) = μ(f(0)) + v^Kdf.

3. The locally convex setting* In this section, for the purpose
of comparison, we consider the special case when H = [0,1] of the
setting in which Goodrich gives his representation theorem [3], that
is, we assume additionally that X and Y are locally convex spaces.
The condition of quasi-Gowurin becomes: given a neighborhood V of
θγ there is a neighborhood U of θx such that if {^Lixi:j = lJ •• ,%}cί/,
then ^7=i[K(Ii)](Xi) e V. This condition stated in terms of the semi-
norms becomes, using Swongs notation [4], there is a pairing (p, q)
and a constant Wp_q for each pair of semi-norms p and q in the
pairing such that q(Σiσ[K(Ii)](%i)) ^ WP-g max,- p(Σ<=i χi) f° r e a c h

partition of (0, 1] and each corresponding collection {xt} in X. This
property is the analogy of Goodrich's bounded (p, q) variation. A
set function which satisfies this property is said to be of bounded
(p, q) convex variation. In order to be able to state an optimal
result in the following theorem we shall assume that Y is quasi-
complete, i.e., each closed and bounded set in Y is complete.

THEOREM 3.1. Suppose T is a linear operator from C into Y
(which is quasi-complete). Then T is continuous if and only if
there exists a μ e L[X, Y] and a set function on <J^ with values in
L[X, Y] which is convex with respect to length and of bounded
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(p, q) convex variation such that T(f) = μ(f(ϋ)) + v\Kdf. Further-

more if T' denotes the restriction of T to Cθ, then \ Tr |p_g — Wp-q.

The theorem follows from 2.3.

REMARK 3.2. It is immediate that the K function of 2.2, 2.3,
and 3.1 is unique.
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