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It is the purpose of this paper to show that oscillation of
the linear second order equation

(1) (r{t)x>y + p(t)x = 0

implies oscillation of the equation

(2) (ri(ί)s')' + a(t)Pl(t)x = 0

for a large class of positive functions a(t), where the follow-
ing condition holds for all large t:

(H) r(ί) ^ ri(ί) > 0, pit) g P l(ί) .

We shall also assume that the functions r(ί), ri(ί), p(t), Pi(t),
and α(ί) are continuous on some half line [T, +oo).

Recently, Fink and St. Mary [2] have shown that to each
p(t) eC[T, + oo) one can associate a number λ0, 0 ^ λ0 <: + <*>, such
that the equation (rx')f + Xpx = 0 is oscillatory provided the number
λ satisfies λ > λ0 and nonoscillatory if 0 <g λ < λ0. We shall show-
that λ may be replaced by a class of positive functions a(t). Thus,
one may associate with each p(t) a wide class of functions which are
oscillation preserving. For an extensive bibliography concerning os-
cillation and nonoscillation criteria for (1) we refer the reader to [4]
We wish to remark that results obtained here are immediate con-
sequences of the Sturm Comparison Theorem if p(t) and p^t) are
nonnegative. (See [3]).

We begin with a comparison theorem on a finite interval [c, d].

THEOREM 1.1 Let a(t) e C(1)[c, d] satisfy a(t) ^ 1 and a'(t) ^ 0 on
[c, d] and assume condition (H) holds on [c, d]. Let y(t) and z(t) be
solutions of (1) and (2), respectively, with

( 3 ) r(c)yr{c) ^ r.jφ'jc) > Q( 3 ) ^ > Q

y(c) ~~ z(c)

and assume y'(d) — 0 with yr(t) > 0 on [c, d). Then z'(t0) = 0 for
some c < t0 ^ d.

Proof. We remark first that the expression on the right [left]
of (3) is to be replaced by + °° in case z(c) = 0 [y(c) = 0]. Assume

33?
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first that r = rt and p ΞΞ pL on [c, d] and that equality holds in (3).
If the lemma is not true, we may assume z'(t) > 0 on (c, d]. We have

0 ^ (V(ί)(α(ί) - l)(y'(t))*dt
Jc

= -r(c)y(c)y'(c)(a(c) - 1) + j'p(ί)(l/(t))'(α(t) - ί)dt

since r(t)y(t)y'(t)a'(t) ^ 0 on [c, d].
Now letting w(£) = r(t)(z(t)y'(t) - y(t)z\t)) we have

\dp(t)(y(t)Y(a(t) - l)dt = \dw'{t)y{t)lz{t)dt
Jc Jc

- -r(d)(y(d)Yz'(d)/z(d) - \\w(t))Vr(t)(*(t))2dt < 0 ,

and this is a contradiction. Now to extend the result to the case
r(t) ;> r^t) > 0 and p(t) ^ p^t), consider the equations

(4) irit)z')'+ ait)pit)z = 0

i 5 ) irtit)uy + α(ί)Pi(ί)w = 0

and let s(ί), u(ί) be the solutions of (4) and (5), respectively, satisfying
z\t) > 0 on [c, d), z'{d) = 0 and

r{c)z'jc) ^

Suppose that u'(t) > 0 on (c, d]. Then multiplying (4) by u{t) and (5)
by z(t), integrating, and subtracting yields

τ1{d)v/{d)z{d) + ric)z'(c)u(c) — r^ήu'iήzic)

(6) - pit))dt = 0 ,

which is a contradiction since the left hand side of (6) is positive.
Therefore, u'(t0) = 0 for some c < t0 ^ d. This proves the theorem.

We now introduce the following definition:

CONDITION (A). The function θit)eC[T, +oo) is said to satisfy
condition (A) provided

liminf [*θis)ds ̂  0 for all large T .
ί-»oo Jr
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S CO

ds/r(s) =

. Let y(t) be a solution of (1) with y(t) > 0 for all t ^ ί0. TΛ<ew
β is α ίi ^ £0 such that yr(t) > 0 on [t19 +°°) or yf = 0 /or αϊϊ
β t.

Proof. Assume y' ^ 0 for all large ί. If the lemma is not true,
assume first that y'(t) < 0 for all t ^ T, T ̂  ίo We may assume by
condition (A) that T is sufficiently large so that

I p(s)ds >̂ 0 for all ί >

For if no such T exists, let T ̂  t0 be fixed but arbitrary and
define

T1 = sup | ί > T: \*p(s)ds < θ | .

Now if TΊ = + oo, then choose ίn —> + oo such that

p(s)ds < 0 for all n .

This contradicts the assumption that p(t) satisfies condition (A) by
the arbitrariness of T. Hence, TΊ < + oo which implies

p(s)ds ^ 0 for a l R ̂  T, ,

contradicting the assumption that no such T1 exists. Then

(7) \tp(s)y(s)ds = y(t)[p(s) - [y\s)[p(σ)dσds ^ 0, ί ^ T ,

so that integrating (1) we have by (7)

(8) y'(t)^r(T)y'(T)/r(t),t^ T .

Now an integration of (8) for t ^ T shows that y(t) —> — oo, a con-
tradiction.

Assume next that y'(Tn) = 0 for Tn-^+oo. Let v(t) = -r(t)y'(t)/y(t),
t ^ t0 so that

(9) V(ί) =p(t) + (v(t))*/r(t),t^t0.

Integrating (9) between Γw and Tn+1, summing on n, and using the
fact that v(t) ̂  0 for all large t contradicts the assumption that p(t)
satisfies condition (A). This proves the lemma.

THEOREM 1.3. Let equation (1) he oscillatory and assume condi-
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tion (H) holds for all large t. Let a(t)eC{1)[T, + °o) satisfy a(t) Ξ> 1
and α'(ί) ̂  0 for t^T and let α(ί)ί>i(ί) satisfy condition (A). Assume

also that 1 ds/r^s) = + 00. 272,e% equation (2) is oscillatory.

Proof. If equation (2) is nonoscillatory, we may assume that
s(ί) is a solution of (2) with z(t) > 0 and s'(ί) > 0 for t ^ T. Otherwise,
if zf ΞΞ 0 for all large t, then ^ = 0 for all large t so (1) cannot be
oscillatory by the Sturm Comparison Theorem. But if y(t) is a solu-
tion of (1) with y{t,) = y'(t2) = 0, ί2 > tx ^ Γ and 2/'(ί) > 0 on [ί^ ί2),
then z'(t) must vanish on (ί1? t2] by Theorem 1.1, a contradiction.

COROLLARY 1.4. Let equation (1) be nonoscillatory, let p(t) satisfy
condition (A), and let a(t) e C(1)[7\ + °°), τλ(t), v^t), r(t), p(t) satisfy
the following conditions for all t Ξ> T:

0 < a(t) ̂  1, α'(ί) ̂  0, r(t) ^ n(ί

S CO

ds/r(s) = +co. Then equation (2) is nonoscillatory.

Proof. If 2/(£) is a nonoscillatory solution of (1) with y(t) > 0
for t ^ T and I / ' Ξ O for all large t, then p(£) = 0 for all large t so
the result follows from the Sturm Comparison Theorem. If yr ^ 0
for all large t then a proof similar to Theorem 1.3 is valid (using
the analogue of Theorem 1.1).

EXAMPLE 1.5. Willett [5] has shown that

(10) x" + λ((2 + t sin t)/2f)x = 0

is oscillatory if λ > τ/18 — 4 and nonoscillatory if λ < τ/Ϊ8 — 4. Since
p(t) = (2 + ί sin t)/2f satisfies condition (A) we see that with a(t) =
l/(ί + sinί),

(11) x" + Ύa(t)p(t)x = 0

is nonoscillatory for all 7 Ξ> 0.

REMARK. The differentiability assumptions on a(t) can be replaced
by nonincreasing or nondecreasing in the previous results. We wish
also to remark that techniques similar to the above may be used to
obtain oscillation and boundedness results for the second order nonlinear
equation

(12) x" + p(t)x2n+1 = 0
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and its generalizations under the assumption that p(t) satisfies con-
dition (A) (see [1]).

2* In this section we shall weaken the assumptions on p(t) and
strengthen the assumptions on a(t) and rλ(t). We begin with a com-
parison theorem on a finite interval.

THEOREM 2.1. Let y(t) be a nonnull solution of (1) satisfying
v(c) = y{d) — 0, let a(t) e Cw[c, d] satisfy a(t) ̂  1 on [c, d] and assume
τt{t)a'{t) is nonincreasing on [c, d]. Assume also that condition (H)
holds on [c, d]. Then every solution of (2) has a zero on (c, d).

Proof. We may assume p = p1 and r ^ rλ on [c, d] since the
solution to (r^x'Y + j>i(ί)α? = 0 satisfying x(c) = 0 Φ x'(c) must vanish
again on (c, d] by the Sturm Comparison Theorem. Let z(t) be the
solution of (2) satisfying z(c) = 0 Φ z'(c) and assume z(t) > 0 on (c, d\.
Then we have

0 £ jV(ί)(α(ί) - l)(τ/'(ί))2ώί - \dp{t){y{t))\a{t) - l)dt

- \dp(t)(v(t))2(a(t) - l)dt + L\\y(t)Yd{r{t)a'{t))

^ \dp(t)(y(t)Y(a(t) - l)dt .

This leads to a contradiction by an argument similar to Theorem 1.1
and proves the result.

COROLLARY 2.2. Assume equation (1) is oscillatory and for all
t^T assume that a(t)eCw[T, +°o) satisfies a(t) ̂ > 1 with n(ί)α'(ί)
nonincreasing. Let condition (H) hold for all t Ξ> T. Then equation
(2) is oscillatory.

COROLLARY 2.3. Assume equation (1) is oscillatory and let
{an(t)}n=ι and {rn(ί)}J=1 be a sequence of continuous functions with
ajjb) G C(1)[ϊ\ +oo), αn(ί) ̂  1, rn{t)a'n{t) nonincreasing, and r(t) ̂  n(ί) *>
• ^ rΛ(ί) ^ --- > 0 for all t^ T.

Let

lim rΛ(ί) Ξ ro(ί) > 0

lim Π a>i(t) Ξ α(ί)
?&-»oo i — l
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where we assume the convergence is uniform on compact subsets of
[T, +00). Then the equation

(13) (ro(t)xΎ + a(t)p(t)x = 0

is oscillatory.

Analogous results are true for the case when (1) is nonoscillatory:

COROLLARY 2.4. Let (1) be disconjugate on the interval [c, d],
(That is, the only solution of (1) with more than one zero on [c, d]
is the zero solution.) Let a(t) e C{1)[c, d] satisfy 0 < a(t) ^ 1 and as-
sume rx(£)a'(i0/(a(£))2 is nondecreasing. Let r(t) ^ rx(t) and p(t) ^ p^it)
on [cf d]. Then equation (2) is disconjugate on [c, d].

EXAMPLE 2.5. Let r(t) = rx(ί) Ξ= 1 and assume x" + p{t)x = 0 is
oscillatory. Then

(14) x" + ta(log tfp{t)x = 0

is oscillatory for all α, β :> 0.

In a certain sense, the conditions imposed on a(t) in Theorem
2.1 and the following corollaries cannot be weakened. For example,
if p = pλ is positive on [c, d] and r = r1 = 1, then using the ordinary
Sturm Comparison Theorem with a(t) = 1 on some subinterval [c, t0],
c < tQ < d, a{d) < 1, and a"(t) ^ 0 on [c, d], we see that equation (2)
oscillates slower than equation (1).

To show the necessity of the requirement that n(έ)α'(ί) be non-
increasing in the above results is less trivial. To do this, we appeal
to some recent results announced by Wong [6], where it is shown
that

(15) a" + (Qogt-l)ainτ/2ty = 0

is oscillatory. However, it is also shown in [6] that

(16) x"

is nonoscillatory. Here, with a(t) = (log ί)(log t — I)"1, all the as-
sumptions, except for a'(t) nonincreasing, of Corollary 2.2 are satisfied.
Yet the conclusion of Corollary 2.2 does not hold for this example.
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