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Conditions are given which characterize the class of
groups with free nonabelian subgroups. It is also shown that
a generalization of the conditions characterize the class of
nonamenable groups. Neither of these two (possibly identical)
classes of groups is the class of models of any finite set of
first-order axioms.

THEOREM 1. A group G has a free nonabelian subgroup if and
only if there are two subsets M, N of G and two elements a,b of G
such that:

( 1 ) M U N., = G

( 2 ) aM n bN = 0

( 3 ) aM U bN c M Π N .

LEMMA. Let X be a set of elements of a group G such that if
x e X then x~ι g X and let Y be the set of x and x~ι for x e X. Sup-
pose that to each ye Y is associated a subset Uy of G such that
yeUy, 1$ Uy, and for all y, ze Y such that yz Φ 1, we have yUza Uy.
Then the subgroup generated by X is free.

Proof of the lemma. By induction on length we show that any
reduced word of positive length in elements of X is in the union of
the Uy and thus it is not the identity.

Proof of Theorem 1. Assume G has a free subgroup H on two
free generators α, b and let R be a set consisting of one element
from each right coset of H in G such that 1 e R. Let M be the set
of all elements wr for reR and w a reduced word in H not begin-
ning with a~ι and let N be the set of all elements zr for reR and
z a reduced word in H not beginning with b~ι. Then the conditions
of the theorem are satisfied.

Conversely, suppose that the conditions of the theorem are
satisfied for subsets M, N and elements α, b. First we observe that
we may assume

(4 ) a-1 £ M and b~l£N .

For example, if or1 e M, then 6"1 ί N by (2) and we replace a with
ba and N with N-aM. The resulting subsets My N — aM and cor-
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responding elements ba, b satisfy (4) and the three conditions of
Theorem 1. (The proof, which we omit, is straightforward. To
establish condition (3) for the replacement sets we use baMabN,
which is a consequence of (3) for the given sets M, N.) Next we
observe that we may assume

(5) leMnN.

For example, if lgJIf then leN by (1). Also by (1) and (3) either
aeM or baeM and by (3) Λ f c c r W and Maarlb~lM. If αeikf,
replace a with a2 and M with a~ιM and if ba e M, replace a with aba
and M with a~ιb~ιM. Under these replacements, or similar ones
involving N if 1 0 N, condition (4) remains valid. The conditions in
the lemma are satisfied with X = {α, 6}, Ua — aM, Ub = 6ΛΓ, Ua~i —
a~ι{G~aM), and ϋh-i = b~ι(G-bN). We conclude that G has a free
nonabelian subgroup.

A problem posed in 1957 (cf. [1, p. 520]) is to determine whether
the class of groups with free nonabelian subgroups is identical with
the class of nonamenable groups. Evidence suggests that the two
classes coincide (cf. [2, p. 12] and [3, p. 9]). By Theorem 1 the two
classes do coincide if and only if the finite sequences mentioned in
the following theorem may be limited to two terms.

THEOREM 2. A group G is not amenable if and only if there is

a finite sequence (aL, Jlίi), (α2, M2)9 •••, (anf Mn) of (not necessarily

distinct) ordered pairs where ai^G and M ^ c G for i — 1, * 9n,

and such that for every xeG the number of terms with xe Mi is

strictly greater than the number of terms with x e α^M*.

Proof. This theorem is a consequence of a theorem by Dixmier
(cf. [3, p. 4]). The conditions in Dixmier's theorem are equivalent
to the same conditions with the functions restricted to characteristic
functions.

A class of groups is a generalized elementary class in case it is
the class of models of a (possibly infinite) set of first-order sentences
(cf. [5, p. 92, problem 2]). An easy application of the compactness
theorem (cf. 5, p. 70]) shows that any generalized elementary class
of groups that contains all finite groups also contains an extension of
every residually finite group. Also every free group is residually
finite (cf. [4, p. 116]), so every free group has an extension in any
generalized elementary class that contains all finite groups. It fol-
lows that neither the class of groups with free nonabelian sub-
groups nor the class of nonamenable groups is the class of models
of a finite set of first-order axioms because in each case the com-
plementary class is not a generalized elementary class.
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