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This paper applies a few results on quadratic forms in
Hilbert space and the theory of focal points from a paper by
Hestenes to a linear control problem with a constraint equa-
tion. The abnormality inherent in this problem allows focal
intervals to exist, The main results are, after assuming the
strengthened Clebsch condition, the following: (1) The signa-
ture is equal to the sum of the focal points on the open in-
terval, (2) The focal points are the discontinuous points of
rank and abnormality of the conjugate base matrix, and (3)
The dimension of a maximal linear space of broken transversal
extremal arcs is less than or equal to n — a, where a is the
abnormality of the problem,

The theory of focal points in the calculus of variations arises in
the study of the second variation. It is an accounting of the zeros
of the solutions of the Euler-Lagrange equations subject to boundary
conditions., The number of zeros is equal to the signature, i.e., the
number of negative terms in the associated quadratic form. It is
also equal to the number of negative characteristic values of the
associated boundary value problem.

The results of this paper were proved earlier by Hazard [2]
using calculus of variations methods; the author of this paper approaches
a control problem of the same sort by using Hilbert space results from
a paper by Hestenes [3]. Earlier work on focal point theory can be
found in Birkhoff and Hestenes [1] and Morse [5].

Our problem is the study of the focal points of the quadratic
form

J(z) = b*Fb + Stlzw(t, 2, wydt
+0
where
20(t, x, u) = 2*Pt)x + 2*Q)u + w*Q*(t)r + w*R(t)u ,

relative to a one-parameter family & (\) (* < A < ') of subspaces of
arcs satisfying the linear control equation

(1.1) @ = Az + Bu E<t<n
a linear constraint equation
1.2) Mx + Nu =0 =t
and the boundary conditions
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(1.3 x(t’) = Cb
(1.4) a(t) = 0, u() = 0 h=st=t).

The matrices 4, P= P* and @ are square-integrable, B, M, N
and R = R* are essentially bounded and measurable, and C, D and
F = F* are constant matrices. The matrix N in addition is assumed
to have the inverse of NN* existing and essentially bounded. Stated
in another way, there exists a positive number % such that at almost
all ton ¥t <t

T* N N*O)r = ha*n

for every = in E™ (a unitary m-dimensional space). An important
assumption the strengthened Clebsch condition will be made later.

2. Preliminary remarks. Let . be a Hilbert space over the
complex or real field. A continuous linear functional L(x) on .o is
called a linear form and a continuous Hermitian quadratic functional
Q(z) on &7 is called a quadratic form. The asscciated bilinear form
will be denoted by Q(x,y). A quadratic form K{z) is said to be com-
pact on . if K(z,) — K(x,) whenever gz, converges weakly to z,.
For any quadratic form Q(x) on .&, two vectors 2 and y are said to
be Q-orthogonal whenever Q(x, y) = 0. If <# is a subspace of A4, then
the Q-orthogonal complement of <&, symbolically <79, are the vectors
in %7 Q-orthogonal to <. And the space &, = Z N <#? is called
the @Q-null space; the vectors in <7, are called @-null vectors. If <7,
consists only of the null vector, then Q(x) is said to be nondegenerate
on . The relative nullity of <Z relative to .7, symbolically »n(<#),
is defined to be the dimension of a linear subspace & such that 7 —
& + BN E N4 =0.

The signature (or index) of a quadratic form @(x) on .o, denoted
by s or s{.&7), is the dimension of a maximal linsar subspace <Z of
7 on which Q{z) is negative. The nullity of @(x) on .57, denoted
by » or n(.97), is the dimension of the @-null space of .o~ The
signature and nullity are well-defined [3]. The quadratic form J(z)
in this paper shall have finite signature and nullity because it will
be shown to be an elliptic form, i.e., a quadratic form that can be
decomposed into a difference D(x) — K(x), where D(x) is a positive
definite quadratic form and K{x) is a compact quadratic form.

A quadratic form Q(x) is said to be nomnsingular on a linear sub-
space <& of o7 if given a linear form L(z) on <& there is a unique
vector ¥ in <Z such that L(x) = Q(x,y) for all z in <& A quasi-
nonstngular quadratic form Q(x) on .&” is a quadratic form non-
singular on each closed linear subspace on which it is nondegenerate.
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3. The Euler-Lagrange equations. The Hilbert space 5# of
this paper is composed of vectors of the form

zia@),ud),d =t t),

where x(¢) is an n-dimensional square-integrable vector, u(t) is a ¢-
dimensional square-integrable vector, and b is an r-dimensional scalar
vector. The inner product is defined to be

@) = b+ | 0o + v @uoldt,

where y: y(t), v(t), ¢ is also an element of 5Z#

The one-parameter family &°(\) (£* < 1 < ¢') described above are
subspaces of 57 and the quadratic form J(x) is defined for elements
x of 27 such that a(f) is absolutely continuous.

THEOREM 3.1. Let xe 5% with x(t) absolutely continuous on
*<t=<n. Then x is J-orthogonal to &€ (\) if and only if there
exist an absolutely continuwous vector p(t) (£° <t < \) and a square-
integrable vector p(t) (° <t < \) such that

3.1) D+ A*p + My = o,
(3.2) B*p + N*u = o, E=<t=)\
(3.3) Fb— C*p(t) = 0 .

For a proof see Mikami [6].

Equations (3.1), (3.2) together with (1.1), (1.2) shall be called the
Euler-Lagrange equations and equation (8.3) is the transversality
condition. An element x of 5~ that satisfies the Euler-Lagrange
equations on the subinterval #* < ¢ < A and the transversality condi-
tion is called a transversal extremal arc on t° < t < .

4. The strengthened Clebsch condition. Let the symbol <&
designate the subspace of 5% whose elements satisfy the equations
& = Ax + Bu, Mz + Nu = 0, z(t") = Cb .

We wish to prove that the quadratic form J(x) is elliptic on <% if
and only if the strengthened Clebsch condition holds: There exist
positive numbers h,, 2, such that at almost all points ¢ on * < ¢ < ¢,

T*ROT + ha*N*(O)NOT = ha*n

for all = in £'?. This is equivalent to, as the reader can verify: There
exist positive numbers h,, h; such that at almost all ¢t on £ < ¢ < ¢,



476 E. Y. MIKAMI

T*R(t)w = h,n*rw

whenever #*N*()N(t)x < h,w*mw. If the matrices R(f) and N(f) are
continuous, then the strengthened Clebsch condition is equivalent to:
There exists a positive number %, such that for all ¢t on * < ¢t < ¢,

*R)w = hao*w

whenever N(f)r = 0.
Let &~ be the subspace of 52 whose elements satisfy the
equations

& = Ax + Bu, x(t°) = Cb .

The following lemma describes weak convergence in .97

LEmMmA 4.1. If {z,.} (m = 1,2, --+) 48 @ sequence in .7 converg-
ang weakly to x, in .7, then z,(t) — x,(t) uniformly on t* <t <t

The proof is an application of the well-known characterization of
weak convergence in L,(n).
Define

1
S(@) = b*b + S w*Rudt @e 7).
t0
Then S(x) is a positive definite quadratic form on .o if and only if
the strengthened Legendre condition holds, i.e., there exists a posi-
tive number %, such that 7*R(t)r = h,w*7 a.e. on ¢ < ¢ < ¢ for all
mwe E?. For a proof see [3]. And one can easily show that
1
K() = Sto(x*Px + & Qu + u*Q*w)dt
13

is a compact quadratic form on .o, We summarize these facts as

LEMMA 4.2. The quadratic form J(x) is elliptic on & if and
only if the stremgthened Legendre condition holds.

Let H(x) be a quadratic form on & defined by

Hz) = Sl(Mx + Nu)*(Mz + Nu)dt .

TBEOREM 4.3. If the strengthened Clebsch condition holds, then
J(x) is elliptic on <Z.

Proof. By Lemma 4.2, J(x) + h,H(x) is elliptic on .o, and since
H(z) = 0 on <7, J(z) is elliptic on <Z&
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To prove the converse of Theorem 4.3, we begin with

LEMMA 4.4. The quadratic form H(x) is nonnegative and quasi-
nonsingular on 7.

Proof. We will utilize a theorem from Hestenes [3, p. 555] which
states that a nonnegative quadratic form Q(x) on an arbitrary Hilbert
space & is quasi-nonsingular if and only if it is positive definite on
the orthogonal complement of the @-null space <.

Augment the matrices M and N so that

-4} =[]

are square matrices having Z~'(¢) existing a.e. and essentially bounded
on "< ¢t=<t. Then

1
D(,y) = ¢*b + S‘O( Yy + Zv)*(Yo + Zu)dt

can be shown to be an inner product on .. We wish to show that
H(x) = D(x) on the D-orthogonal complement of <& For arbitrary
vectors ¢ in E” and w(t) in L,q — m) (if ¢ = m, omit w(t)), there
exists a vector ¥ in <& such that
My + Nv =0, Lv = w, y(t°) = Ce .
Since D(z, y) = 0, we have
1
c*b + Stow*Ludt =0
!
and so b =0 and Lu = 0. Thus D(z) = H(z) on <&”. Observe that
& is the H-null space of .7 and so in view of the theorem mentioned
earlier, H(x) is quasi-nonsingular on .o/

THEOREM 4.5. If J(x) is elliptic on <& then the strengthened
Clebsch condition holds.

Proof. The quadratic form H(x) is nonnegative and quasi-non-
singular on & and J(x) is elliptic on <Z, the H-null space of .oz A
theorem of Hestenes [3, p. 531] asserts the existence of a positive
number s such that J(x) + sH(x) is elliptic on .o By Lemma 4.2
this is equivalent to the strengthened Clebsch condition.

Let us define a nonsingularity condition as follows: The inverse

of the matrix
R —N*
R, =
[N 0 }
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exists a.e. on t* < ¢ < ¢ and has essentially bounded elements. We
will prove that the nonsingularity condition holds when the strength-
ened Clebsch condition is assumed.

LEMMA 4.6. If the strengthened Clebsch condition holds, then
there exists a positive number hy such that for almost all t on t* <
t< t,

T*(R* + N*N)rw = hen*z

Jor all e=1 and all @ in E°.

Proof. Let I be a measureable set of almost all points of * < ¢ < ¢!
such that if ¢e I, then 7#*(R(t)w = h,m*r whenever
T*N*Q)N@)r < h,w*n .
Suppose for each integer =, there exists ¢,e I, 7, *7, = 1, such that
L (RA(t,) + N*@IN ), < 1n .
So for all n large enough,

T N*(t )N, < hy
iR t,)mT, < hi.
Thus
h: > miR*(,)7, = (miR(E.)7,) = ki,

a contradiction.

THEOREM 4.7. If the stremgthened Clebsch condition holds, then
the nonsingularity condition holds.

Proof. Let

R R —e¢N¥* >
= 1] C = .
¢ cN 0

We wish to show that R*R, is positive definite a.e. on ' < ¢ < ¢* for
some number c¢ large enough. 8o let we E? zc E™ be arbitrary
vectors. Then
w
[w z]*Rc*Rcfj J = ho|wl — 2ck|w||z] + h|z]?
z
where k is a scalar constant. By choosing ¢ large enough, R}R, is

positive definite. The determinant of R, is bounded away from zero
and since
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|det R,| = ¢*™|det R, | ,

so is the determinant of R,.

5. Abnormality. Let the control equation & = Axz + Bu and
the constraint equation Mz + Nu = 0 be given. With respect to these
equations, there is inherent the notion of abnormality. For the moment
define the order of abnormality of a subinterval 2 < ¢ < ¢ of ¢
t < t' as the number of linearly independent solutions {p, ¢}, (t) ab-
solutely continuous and p(¢t) square integrable, of

D+ A*p + M*p =0

(5.1) .
B*p + N*p =g

a.e. on ? <t < t*. Because of the assumption that the inverse of
NN* exists and is essentially bounded, we can write

p= —(NN*'NB*p .
Equation (5.1) then reduce to the form

»+ A¥p=20

5.2

and here we refer the reader to [4]. It follows from (5.2) that the
order of abnormality is at most «.

Later the order of abnormality will be redefined for the problem
on hand. Abnormality is important in this paper because it allows
nontrivial solutions of the Euler-Lagrange equations to have x(¢) = 0,
u(t) = 0 on a subinterval of ¢ < ¢ < ¢

6. Focal points., The strengthened Clebsch condition is assumed
for the rest of this paper. Hence the quadratic form J(z) is elliptic
on <% and on any closed subspace of <&

Let & be the subspace of arcs ¢ in <# that satisfy the Euler-
Lagrange equations and the transversality condition. Such arcs shall
be called focal ares. If a focal arc x has x{¢) = 0 on a subinterval I of
< ¢t < ¢ then u{t) = 0 on I also. Now for a fixed », <N 8,
the space of focal ares & can be decomposed into a direct sum of
two subspaces: one that has a0\) = 0 and one that doesn’t. The former
subspace can be further decomposed into a direct sum of three sub-
spaces: one that has 2(¢f) vanishing on " < ¢ <, one that has x(¢)
vanishing on some subinterval M < ¢ <9, N < 0, and one that does
not have a combination of these two properties. If the last subspace
is denoted by & (), then .# (\) is a maximal subspace in &% whose
elements x have z(\) = 0 and 2 is not a linear combination of arcs y
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that have y(tf) = O on ¢ < ¢ < ) and arcs z that have z(f) = 0 on some
Mt =<0,v<d. Itis the dimension of the subspace & (\) that in-
terests us.

Let

& = {xe F:x(t) = 0} .

Now a one-parameter family of subspaces & (\) (£ <\ < ¢'), which
we shall call a resolution of &, has been defined earlier. Let s(\)
and n(») denote the signature and nullity of J(x) on Z (). The
signature is a monotonic nondecreasing function of A. A result of
Hestenes [3] states that s(\) = s(A — 0) and that the dimension of
Z (\) is equal to s(» + 0) — s(\), i.e., the “jump” at a discontinuity
of s(A). So let us define a focal point as a point A (' =< A < t') such
that % (\) is not the null space and define the order of the focal
point \ as the dimension of % (\). In other words \ is a focal point
if and only if there exists a focal arc x == 0 such that x(¢) vanishes
at » and z is not a linear sum of arcs that have y(f) =0 on #* <
t < x and arcs that have z(¢) = 0 on some A < ¢ £ 6. Later we shall
refer a focal point as a focal point of the end point, for example, )
is a focal point of t° in the above case.

In the special case where the matrix C = 0, i.e., (¢’ = 0, the
word “conjugate” is used instead of “focal”.

The above facts can be summarized in the following:

THEOREM 6.1. The signature of J(x) on & s equal to the sum
of the order of the focal points N, t° <N < ¢

Theorem 6.1 was proved by Birkhoff and Hestenes [1] for the case
# = w and by Hazard [2] for the case @& = u, Mx + Nu = 0. Hazard
used focal intervals, i.e., intervals on which a focal arec vanishes.
Our focal point is the right endpoint of Hazard’s focal interval.

We have described the notion of abnormality, relating it to the
existence of focal intervals. For example, if the problem were normal,
i.e., the order of abnormality equals zero for all subintervals of ¢° <
t < #, then the focal intervals collapse into points. In fact if the
order of abnormality is the same for all subintervals, then again the
focal intervals collapse into points.

7. Conjugate bases. In a simple variational problem, for ex-
ample, one in which the arcs satisfy

t=ub=0,20t)=020¢)=0,

and the strengthened Legendre condition holds, it is well-known that
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there exists a conjugate base of the left end point ¢, z.(t) (@ =
1, ..., n), such that the zeros of the determinant of the matrix

(7.1) (xi(t)) E<t<tii,a=1,.v,m)

are the conjugate points of ¢° and that the order of a conjugate point
N <A< ¢ is equal to # minus the rank (zi(\)). In our control
problem the determinant of the matrix (7.1) would be zero on focal
intervals and even possibly identically zero. In short the determinant
does not always give the focal points; however, the rank and the
abnormality together provide the location of the focal points.

Let us begin by assuming that the matrix [F, C*] has full rank
r. And let us define a focal extremal (relative to ¢°) to be a system
of vectors

w: 2(t), w(t), b, p(t), £(t) =st=st)

satisfying the Euler-Lagrange equations, the end condition (1.3), and
the transversality condition. It follows easily that if « and y are
focal extremals then

D (o — %) = 0
dt(py x*q) .

So we say that two focal extremals are conjugate to each other if
p*@)y(t) — «*(t)qt) = 0 @C=stst).
THEOREM 7.1. There exists a linearly independent set of mutu-

ally conjugate focal extremals, x, (@ = 1, +++, m), such that every focal
extremal can be written as a finite linear combination of the x,.

The proof is a simple exercise in differential equation theory.
The set described in Theorem 7.1 shall be called a conjugate base
(of ¢%.
THEOREM 7.2. Let
Tt Tal(t)y Ualt), by Dalt)s tLa(t) E<t<tija=1,--+,m)

be a set of linearly independent mutually conjugate vectors satisfying
the Euler-Lagrange equations and having a.x.(t’) = 0 (summed over
) whenever ab, = 0 (a, are scalars). Then there exist matrices C
and F such that F = F'*, rank [F, C*] = r, 2.(t) = Cb,, and

Fb, — C*P,(t) =0 .

Proof. Without loss of generality assume
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b, = [10 - O]*

b,=1[0+--010...0]* (1 in v-th position)
byoy= oee=0b,=0.

Let the matrix C be the columns of [x,(z%), ++-, #,(¢°), 0, -+, 0]. Then
2, (8 = Cb, (=1, «-+, n).
Let F be the matrix

M@m@ 0
F= ... (@, B=7).
0 1

Then F = F'* because the x, are mutually conjugate. The remaining
relations are easily verified.

Let £ < » < t. The order of abnormality a(\) of this problem
is defined to be the number of linearly independent solutions {p, £, b}
of the equations

D+ A%+ M*pr=0
B*p + N*u =0 =t
Cb=0,Fb— C*p(t®) = 0 *

By referring back to §5 we see that the order of abnormality a()\)

is a nonincreasing function of A and continuous from the left. It is
at most z.

THEOREM 7.3. If z, (@=1,-.-,m) is a conjugate base and if
d(t) is the rank of the matriz i) "<t <t54,a =1, -.-,n), then
the focal points of t° are the points N, t° < N < ' at which

(7.2) d(n + 0) + a(h + 0) — dO) — a(h) > 0 .

Movreover if N is such a focal point, then the order of the focal point
equals the left-hand side of (1.2). The nullity of J(x) on & is equal
to n — d{t).

The proof follows from the definitions of a focal point and ab-
normality.

8. Separated end conditions. This section deals with a subspace
having separated end conditions. The control parameter b is composed
of two component vectors

b:bg,b{ (0:1’-..,74:'::1,--.’8).



FOCAL POINTS IN A CONTROL PROBLEM 483

Let < denote the vectors ¢ in 57 that satisfy

T = Ax + Bu, Mz +~ Nu =0
2(t°) = Cyby, x(t") = C.b, .
Let

F(\) ={fwe b, =0,2(t) = 0,ut) =0 on V<t <t}
G0N ={we Dby =0,2() = 0,ut) =0 on <t <\
GRS

be resolutions of Z(¢) and < (t°), respectively. The quadratic form
J(x) is written

J@) = B Fb, + b Fb, + | 20,5, vt
where F, = Fy* and F, = F*. Again assume
rank [F,, C¥] = », rank [F, C}] = s .
Let t* <\ < ¢. For convenience let
gMN =M +a0 =N nzM)

(J-orthogonality relative to <r). An are 2 is in & () if and only if
x is a transversal extremal arc on # < ¢ <)\ and a transversal ex-
tremal arc on A < ¢t < ¢'. If the vector p(¢) has a discontinuity at A,
then we say that x is a broken transversal extremal arc. A result
of [3, p. 565] is

8.1.) (2) = s[Z\N)] + slz(M)] + k)

where
EN) = s[& (V)] + re][E (V) + 20V .

The number k(\) is the dimension of a maximal linear space of broken
transversal extremal arcs having J(z) < 0. Note that k(\) is constant
except at focal points of ¢° or ¢ by virtue of (8.1).

In normal problems it is known that £(\) < n. This is also true
for problems with the order of abnormality not equal to zero. Let
@ be the maximal number of linearly independent solutions {p, 2, b,
b} of the equations

D+ A%+ M*pu =0

8.2 sttt
(®:2) B*p + N*p =0 t=t=?)
F1b1 + C;kp(tl) =0

8.3) Fp, — Cip(t) = 0

Cb, =0,Ch,=0.



484 E. Y. MIKAMI
We call the number a the order of abnormality of the problem.

THEOREM 8.1.

(8.4) 0<kM)=n—a <\ <t
(8.5) () = s(D) + kE + 0)
(8.6) s(2) = s(Z(¢) + k' — 0)

Proof. Let {D. Mas bous b} (@ =1, «-+, a) be linearly independent
solutions of (8.2)-(8.3). Fix t* < A < ¢ and abbreviate

e=rn[Eg(N) + Z0N)].

Then there exist J-null vectors x;, of & (\) + =2(\) and vectors p;
(=1, .--,¢) such that x,(\) = 0 and the set of vectors

PNy DsV = 0) = D(L +0)  (@=1,-,058=1,:,0)

are linearly independent. If not, then there would exist a vector x
equal to a finite linear combination of the x, and a vector » con-
tinuous at A, a contradiction. Since the vectors xz; are J-orthogonal
to &(\) it can be verified by computation that

Pa(x)*’y(k) =0 (0( =1, ..., a’)
B = 0) = B+ OLY) =0 (B=1,--+,0)

for each y in & (\). This means there are # — a — e linearly inde-
pendent y(») and therefore the number of linearly independent vectors
in & (A) whose linear combinations do not vanish at A is less than
or equal to » — a — e. Since the vectors in & (\) that have y(\) =0
have J(y) = 0, we conclude that sf¥(\)] < n — a — e. Finally k(\) <
n—a—e +e=n—a.

To prove (8.5) choose A in (8.1) near t* so that no focal point of
t° or ¢ is in ¢ < ¢ < N. Equation (8.5) follows readily.

COROLLARY 8.2. If s, and s, respectively denote the mnumber of
Sfocal points of t° and t on a given interval I, then the following
relations hold:

S — 8 = k(t® + 0) — k(@ — 0) if I= (% ¢
s, — 8 = k(£ + 0) — k(& + 0) if T= (&, ¢]
So — 8 = k(t° — 0) — k(@ — 0) if I= [t ¢)
S — 8 = k(t® — 0) = k(@ + 0) if I=[t%¢].

In each case |s, — s, | < n — a.
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