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Let K be a class of relational systems of a fixed similari-
ty type, n an infinite cardinal. A system % of cardinality n
is (n, iΓ)-weakϊy universal if each system in K of cardinality
at most n is isomorphically embeddable in A. The object of
this note is to construct 2**o nonisomorphic finitely generated
0-groups and hence answer in the negative the following
problem attributed to B. H. Neumann. Is there a group
which is (^o, i^i)-weakly universal, where K^ is the class of
O-groups ?

If 31 is (tt, iΓ)-weakly universal and also a member of K, then
21 is (tt, if)-universal. It is known that (n, if )-universal systems
exist for many classes K and cardinals tt. In particular, Morley and
Vaught established a useful condition for the existence of (π, K)-
universal systems for K an elementary class, tt an appropriate cardinal
(see [7]). However there are no theorems of wide applicability con-
cerning the existence of (^0, iΓ)-universal systems; here the structure
of the systems in K must be carefully analyzed. To illustrate this,
consider the classes JKi of 0-groups; K2 of abelian 0-groups (i.e., tor-
sion free abelian groups); K3 of ordered groups (i.e., groups of type
(H, , ^y where (H, > is an 0-group linearly ordered by ^) if4

of abelian ordered groups. By applying the results in [7], (assuming
the generalized continuum hypothesis), it is easily seen that there
exists an (tt, iQ-universal system for all tt > ^ 0 and i = 1, 2, 3, or 4.

The situation for tt = ^ 0 is more complicated. There is an (^0,
iQ-universal group (see [1, p. 64]). However, there is no ordered
group which is ()g$Q, iQ-weakly universal and hence there is no (^0,
iQ-universal group. This follows readily from the fact that the free
abelian group on two generators has 2*° nonisomorphic orders (see
[2, p. 50]). Theorem 2, which establishes the nonexistence of a group
which is (^0, iQ-weakly universal, solves a problem of B. H. Neumann
(see [2, p. 211, Problem 17]).

I* Definitions* An 0-group is a group G for which there exists
a linear ordering relation ^ on G satisfying the following condition:

a ^ b implies cad :£ cb d for all α, b, c, de G. For a group G
the commutator of x and y in G is denoted [x,y] — x~x y~x xy; for
subsets A and B of G, [A, B] is the subgroup of G generated by
{[α, b]: aeA,beB}; Gr = [G, G] G" = [Gf, G']. L e t F be the free
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group generated by a set X; a set R of equations of the form
wL = w2, where wι and w2 are words in F, is a set of relations in X.
A group G generated by the set X is given by a set R of defining
relations if the following conditions are satisfied.

( i ) R is a set of relations in X.
(ii) Let φG be the unique homomorphism from F onto G which

extends the identity map on X. Then the kernel of φG is the normal
subgroup of F generated by {w1w2~

1: wι = w2e R}.

2* Finitely generated O-groups* In [4], P. Hall constructs 2*°
nonisomorphic finitely generated groups H each having torsion-free
center and satisfying the condition [H", H] = 1. We will show that

fthese groups are also 0-groups.

LEMMA 1. (B. H. Neumann). Let G be an 0-group generated by
a set X and given by a set R of defining relations let H be a group
generated by the set {a} U X where a £ X, with the relations R and
[a~n b an, b'] = 1 for all 6, V e X, n = 1, 2, 3, as a set of defining
relations. Then H is an 0-group.

Proof. See [6, pp. 10-11].

The next lemma is a slight variant of von Dyck's Theorem (see
[5, p. 130]).

LEMMA 2. Let G be a group generated by a set X, given by a
set R of defining relations let H be a group generated, by X. given
by the set R U S of defining relations. Then H is isomorpic to G/N
where N is the normal subgroup of G generated by

{ψoiw.wi-1): w1 = w2e S} .

THEOREM 1. There exist 2**° nonisomorphic finitely generated
0-groups.

Proof. In his construction, P. Hall used a group G satisfying
the following conditions :

(1) G is generated by the set {α, b}. For notational convenience
we will write b = b0 and

bi = a~{ baι i = 0, ± 1 , ± 2 , . . . .

G is given by the defining relations

[[δi, δy], bk] = 1 i,j,k = 0, ± 1 , ± 2 ,



ON THE NUMBER OF FINITELY GENERATED 501

V>j, bi] = [bj+k, bi+k] i, j , ft = 0, ± 1 , ± 2 , . . .

and ί < j.
(2) the center Z of G is free abelian with generators

{[6,, 6 ] : i = l , 2 , 3 , . . . } .

Let C be a denumerable torsion-free abelian group. Appealing
to [4] (p. 433), we find that there is a set {He: c < 2*°} of nonisomor-
phic groups satisfying the following conditions:

(3) the center Ce of Hc is isomorphic to C and HJCe is isomor-
phic to G/Z;

(4) [H", He] = 1 and each if, is generated by two elements.
As is known (see [3, p. 94]), a group H is an 0-group if both its

center C and the factor group H/C are 0-groups. But by (3), each
Ce is an 0-group and He/Ce is isomorphic to G/Z. Hence, to verify
that each He is an 0-group it suffices to show that G/Z is an
0-group.

Let B be a group generated by the set {α, 6} and given by the
defining relations occurring in (1) and the relations

(5) [bk,b0] = 1 for fc = 1,2,3, . . . .

By Lemma 2, B is isomorphic to G/N, where N is the normal sub-
group of G generated by

{<Po[h, b0]: k = 1, 2, 3, •} = {[6,, δ0] e G : k = 1, 2, 3, ..} .

Applying (2), we have N — Z and 5 is isomorphic to G/Z. Further-
more, B is given by the defining relations (5) alone. For if we as-
sume j > 0 and use (5), then we have:

(ajba~j)b = {aύba~j) b(aja~j)

= aj(b(a-jbaj)a-j)

= aj((a-jbaj)ba-j)

= b(ajba-j) .

Thus,

[bk, b0] = 1 for ft = 0, ± 1 , ±2, .

A similar computation yields

[6ί,6y] - 1 for i , i = 0, ± 1 , ±2 . .

Hence the relations in (1) hold trivially.
Since the free group with generating set {6} is an 0-group, we

can infer from Lemma 1 that the group B which is generated by
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{α, b} and given by the defining relations (5) is an 0-group i.e. G/Z
is an 0-group.

Since a countable group has only countably many finitely gener-
ated subgroups, we obtain our conclusion:

THEOREM 2. There does not exist a group which is (^0> iQ-
weakly universal.
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