Pacific Journal of Mathematics

ON NEARLY COMMUTATIVE DEGREE ONE ALGEBRAS

JOHN D. ARRISON AND MICHAEL RICH

Vol. 35, No. 3 November 1970

ON MEARLY COMMUTATIVE DEGREE ONE ALGEBRAS

JOHN D. ARRISON AND MICHAEL RICH

The main result in this paper establishes that there do not exist nodal algebras \boldsymbol{A} satisfying the conditions:

- $(I) \quad x(xy) + (yx)x = 2(xy)x$
- (II) (xy)x x(yx) is in N, the set of nilpotent elements of A over any field F whose characteristic is not two.

Recall that a finite dimensional, power-associative algebra A with identity 1 over a field F is called a nodal algebra if every x in A is of the form $x = \alpha 1 + n$ with α in F and n nilpotent, and if the set N of nilpotent elements of A does not form a subalgebra of A. Following the convention laid down in [5] we call any ring satisfying (I) a nearly commutative ring.

In a recent paper [4] one of the authors has established the results given here if the field F has characteristic zero. In that paper the theorem of Albert [1] that there do not exist commutative, power-associative nodal algebras over fields of characteristic zero was used extensively. Recently, Oehmke [3] proved the same result if the field has characteristic $P \neq 2$. This result of Oehmke's will be used throughout this paper.

The known class of nodal algebras over fields of characteristic P are the truncated polynomial algebras of Kokoris [2] which are flexible. Our results show that if nearly commutative nodal algebras exist over fields of characteristic P they will not fall into the class of Kokoris algebras. In [5] one of the authors has shown that there do not exist nearly commutative nodal algebras over fields of characteristic zero.

Let A be a nearly commutative nodal algebra over a field F whose characteristic is $P \neq 2$. Then A^+ is a commutative, power-associative algebra over F. Therefore by [3] N^+ is a subalgebra of A^+ . In particular, N is a subspace of A. The nilindex of A is defined to be the least positive integer k such that $n^k = 0$ for every n in N.

Lemma 1. There do not exist any nearly commutative nodal algebras whose nilindex is two over any field of characteristic $P \neq 2$.

Proof. Let A be such an algebra. Then since $z^2 = 0$ for every z in N and N is a subspace of A we may linearize to get xy = -yx for all x, y in N. Let $xy = \alpha 1 + n$, $yx = -\alpha 1 - n$. It suffices to

show that $\alpha=0$. Using (I) we get $\alpha x+xn-\alpha x-nx=2\alpha x+2nx$. Since xn=-nx we have $4xn=2\alpha x$ and since $P\neq 2$ $xn=(\alpha/2)x$ and $nx=(-\alpha/2)x$. Using (I) again we have n(nx)+(xn)n=2(nx)n or $(\alpha^2/2)x=(-\alpha^2/2)x$. Thus $\alpha=0$ and A cannot be nodal.

LEMMA 2. Let A be a nodal algebra satisfying (II) over a field F whose characteristic is not two. Then if $N^{\cdot 2} = \{x \cdot y \mid x, y \text{ in } N\}$, then $N^{\cdot 2}N \subseteq N$ and $NN^{\cdot 2} \subseteq N$. (Here $x \cdot y$ denotes the multiplication in A^+)

Proof. Let x and y be elements of N such that $xy = \alpha 1 + n$ with α in F and n in N. Then $yx = 2x \cdot y - \alpha 1 - n$ and $(x, y, x) = 2\alpha x + nx + xn - 2x(x \cdot y)$. But $nx + xn = 2x \cdot n$ is in N, $2\alpha x$ is in N, and by (II) (x, y, x) is in N. Therefore $x(x \cdot y)$ is in N. Linearizing this we have:

$$(1) x(z \cdot y) + z(x \cdot y) is in N if x, y, z in N.$$

Let z=y in (1). Then $xy^2+y(x\cdot y)$ is in N. But by the previous remark $y(y\cdot x)$ is in N. Thus we conclude that for all x, y in N, xy^2 is in N. Linearizing this we have that $x(z\cdot y)$ is in N. Since N is an ideal of A^+ [3], $x\cdot (z\cdot y)$ and hence $(z\cdot y)x$ is also in N. Thus $N^{\cdot 2}N$ and $NN^{\cdot 2}$ are contained in N.

LEMMA 3. Let A be a nodal algebra satisfying (I) and (II) over a field F whose characteristic is not two. Then $S = N^{\cdot 2} + N^{\cdot 2}N$ is an ideal of A which is contained in N.

Proof. Linearizing (I) we have

(I')
$$x(zy) + z(xy) + (yx)z + (yz)x = 2(xy)z + 2(zy)x$$
.

Let $z = u \cdot v$ with u, v in N. Then we have

$$(2) \qquad x((u \cdot v)y) + (y(u \cdot v))x - 2((u \cdot v)y)x$$

$$= 2(xy)(u \cdot v) - (u \cdot v)(xy) - (yx)(u \cdot v) .$$

Clearly the right hand side is in S. Therefore

(3)
$$x((u \cdot v)y) + (y(u \cdot v))x - 2((u \cdot v)y)x$$
 is in S if x, y, u, v , are in N.

Adding and subtracting $2((u \cdot v)y)x$ to (3) we have: $2x \cdot ((u \cdot v)y) + 2(y \cdot (u \cdot v))x - 4(((u \cdot v)y)x)$ is in S. But $((u \cdot v) \cdot y)x \in N^{\cdot 3}x \subseteq N^{\cdot 2}x \subseteq S$. Also by Lemma 2

$$(u \cdot v)y \in N, x \cdot ((u \cdot v)y) \in N \cdot^2 \subseteq S.$$

Thus, $((u \cdot v)y)x \in S$ and combining this with $2x \cdot ((u \cdot v)y) \in S$ we have

 $x((u \cdot v)y) \in S$. This shows that $(N \cdot {}^{2}N)N \subseteq S$ and $N(N \cdot {}^{2}N) \subseteq S$ which proves that S is an ideal of A. The fact that $S \subseteq N$ follows directly from Lemma 2.

THEOREM 1. There do not exist any simple nodal algebras satisfying (I) and (II) over any field F whose characteristic is not two.

Proof. We show that if A is a simple nodal algebra satisfying (I) and (II) then the nilindex of A is two contradicting Lemma 1. By Lemma 3, S is an ideal of A contained in N. Then by the simplicity of A, S=0. Let y be any element of N. Clearly $y^2 \in S$. Therefore $y^2=0$ and the nilindex of A is two.

THEOREM 2. There do not exist any nodal algebras satisfying (I) and (II) over any field whose characteristic is not two.

Proof. For if B is such an algebra it would have a homomorphic image which is a simple nodal algebra contradicting Theorem 1.

COROLLARY 1. There are no nearly commutative nodal algebras satisfying (x, x, z) = (z, x, x) over any field F whose characteristic is not two.

Proof. Let A be such an algebra with x, z in N. From (x, x, z) = (z, x, x) we obtain: $(zx)x + x(xz) = zx^2 + x^2z$. The right hand side is in N by [3] and the left hand side is just 2(xz)x by (I). Therefore (xz)x is in N. Using (I) it is an easy matter to show that x(zx) is also in N. Thus (x, z, x) is in N if x and z are in N. Therefore A satisfies condition (II) and by Theorem 2, A cannot be nodal.

An algebra satisfying the identity (x, x, z) = (z, x, x) is called an anti-flexible algebra [6].

COROLLARY 2. If A is a nearly commutative algebra over a field F of characteristic not two and if A has an anti-automorphism then A cannot be nodal.

Proof. Let ϕ be the anti-automorphism and let $x\phi = x'$ for every x in A. Applying ϕ to the identity (I) we get:

$$(4)$$
 $x'(x'y') + (y'x')x' = 2x'(y'x')$.

But by (I) x'(x'y') + (y'x')x' = 2(x'y')x'. Therefore we have (x'y')x' = x'(y'x') for all x', y' in A. But ϕ is onto. Therefore (xy)x = x(yx) for all x, y in A and A is flexible. By Theorem 2, A cannot be nodal.

REFERENCES

- 1. A. A. Albert, A theory of power-associative commutative rings, Trans. Amer. Math. Soc. 69 (1950), 503-527.
- 2. L. A. Kokoris, Nodal noncommutative Jordan algebras, Canad. J. Math. 12 (1960), 487-492.
- 3. R. H. Oehmke, Flexible power-associative algebras of degree one, Proc. Nat. Acad. Sci., U.S.A. 53 (1969), 40-41.
- 4. M. Rich, On a class of nodal algebras, Pacific J. Math. 32 (1970), 787-792.
- 5. ———, On Nearly commutative nodal algebras in characteristic zero, Proc. Amer. Math. Soc. 24 (1970), 563-565.
- 6. D. Rodabaugh, A generalization of the flexible law, Trans. Amer. Math. Soc. 114 (1965), 468-487.

Received December 19, 1969, and in revised form February 5, 1970.

Monmouth College and Temple University

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON Stanford University Stanford, California 94305

RICHARD PIERCE University of Washington Seattle, Washington 98105 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

B. H. NEUMANN

E. F. BECKENBACH

τ

F. WOLE

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION TRW SYSTEMS NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is \$8.00; single issues, \$3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues \$1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

Pacific Journal of Mathematics

Vol. 35, No. 3 November, 1970

John D. Arrison and Michael Rich, On nearly commutative degree one algebras	533
Bruce Alan Barnes, Algebras with minimal left ideals which are Hilbert spaces	537
Robert F. Brown, An elementary proof of the uniqueness of the fixed point index	549
Ronn L. Carpenter, <i>Principal ideals in F-algebras</i>	559
Chen Chung Chang and Yiannis (John) Nicolas Moschovakis, <i>The Suslin-Kleene</i>	
theorem for V_{κ} with cofinality $(\kappa) = \omega \dots \dots$	565
Theodore Seio Chihara, The derived set of the spectrum of a distribution	
function	571
Tae Geun Cho, On the Choquet boundary for a nonclosed subspace of $C(S)$	575
Richard Brian Darst, The Lebesgue decomposition, Radon-Nikodym derivative,	
conditional expectation, and martingale convergence for lattices of sets	581
David E. Fields, <i>Dimension theory in power series rings</i>	601
Michael Lawrence Fredman, Congruence formulas obtained by counting	
irreducibles	613
John Eric Gilbert, On the ideal structure of some algebras of analytic functions	625
G. Goss and Giovanni Viglino, Some topological properties weaker than	
compactness	635
George Grätzer and J. Sichler, On the endomorphism semigroup (and category) of	
bounded lattices	639
R. C. Lacher, Cell-like mappings. II	649
Shiva Narain Lal, On a theorem of M. Izumi and S. Izumi	661
Howard Barrow Lambert, Differential mappings on a vector space	669
Richard G. Levin and Takayuki Tamura, Notes on commutative power joined	
semigroups	673
Robert Edward Lewand and Kevin Mor McCrimmon, Macdonald's theorem for	
quadratic Jordan algebras	681
J. A. Marti, On some types of completeness in topological vector spaces	707
Walter J. Meyer, Characterization of the Steiner point	717
Saad H. Mohamed, Rings whose homomorphic images are q-rings	727
Thomas V. O'Brien and William Lawrence Reddy, Each compact orientable surface	
of positive genus admits an expansive homeomorphism	737
Robert James Plemmons and M. T. West, On the semigroup of binary relations	743
Calvin R. Putnam, <i>Unbounded inverses of hyponormal operators</i>	755
William T. Reid, Some remarks on special disconjugacy criteria for differential	
systems	763
C. Ambrose Rogers, <i>The convex generation of convex Borel sets</i> in euclidean	
space	773
S. Saran, A general theorem for bilinear generating functions	783
S. W. Smith, Cone relationships of biorthogonal systems	787
Wolmer Vasconcelos, On commutative endomorphism rings	795
Vernon Emil Zander, <i>Products of finitely additive set functions from Orlicz</i>	
spaces	799
G. Sankaranarayanan and C. Suyambulingom, Correction to: "Some renewal	
theorems concerning a sequence of correlated random variables"	805
Joseph Zaks, Correction to: "Trivially extending decompositions of E""	805
Dong Hoon Lee, Correction to: "The adjoint group of Lie groups"	805
James Edward Ward Correction to: "Two groups and Jordan alphae"	806