Pacific Journal of Mathematics

PRINCIPAL IDEALS IN F-ALGEBRAS

RONN L. CARPENTER

Vol. 35, No. 3

November 1970

PRINCIPAL IDEALS IN F-ALGEBRAS

RONN L. CARPENTER

Suppose B is a commutative Banach algebra with unit. Gleason has proved that if I is a finitely generated maximal ideal in B, then there is an open neighborhood U of I in the spectrum of B such that U is homeomorphic in a natural way to an analytic variety and the Gelfand transforms of elements of B are analytic on this variety. In this paper it is shown that this result remains valid for principal ideals in uniform F-algebras with locally compact spectra. From this it follows that if A is an F-algebra of complex valued continuous functions on its spectrum satisfying (1) the spectrum of A is locally compact and has no isolated points, and (2)every closed maximal ideal in A is principal, then the spectrum of A can be given the structure of a Riemann surface in such a way that A can be identified with a closed subalgebra of the algebra of all functions which are analytic on the spectrum of A. Finally an example is given which shows that neither Gleason's result nor the characterization described in the preceding sentence extends to nonuniform algebras.

2. Lemmas and theorems. We assume throughout this paper that A is a uniform commutative F-algebra with unit, and that the spectrum X of A is locally compact and has no isolated points. We identify A and A^{\uparrow} and regard A as a compact open closed subalgebra of C(X) the algebra of all continuous functions on X. Since A is an F-algebra, the space X is hemi-compact. We fix an ascending sequence $\{X_n\}$ of compact A-convex subsets of X such that each compact subset of X is contained in some X_n . (A subset E of X is said to be Aconvex if for each x in X - E there is an element f of A such that $|f(x)| > \sup \{|f(y)|: y \in E\}$.) Denote by B_n the completion of the algebra $A \mid X_n$ with respect to the supremum norm on X_n . Then A =lim inv B_n , $X = \bigcup X_n$, and Spec $B_n = X_n$ for each n. Define π_n to be the natural homomorphism of A into B_n . In the case under consideration π_n is the restriction map defined by $f \to f | X_n$ for each f in A. Finally for a subset E of X and f in C(X) we let $|f|_E = \sup \{|f(y)|:$ $y \in E$.

In [3] Michael defines a strong topological divisor of zero to be an element f of A such that the map $g \to gf$ $(g \in A)$ is not a homeomorphism of A into A.

LEMMA 2.1. Suppose x is a point of X and f is an element of A such that ker (x) = Af. Then f is not a strong topological divisor

of zero.

Proof. Suppose hf = 0 for some $h \in A$. Since hull $(f) = \{x\}, h$ must be identically zero on $X - \{x\}$. Since $\{x\}$ is not isolated and h is continuous, h must be identically zero on X. Therefore, the map $g \to gf, g \in A$ is one-to-one.

Since Af is closed in A, it is an F-algebra. Hence, the map $g \rightarrow gf$ is a one-to-one continuous linear map of the F-algebra A onto the F-algebra Af. The open mapping theorem (see [1], p. 55) implies that the map $g \rightarrow gf$ is a homeomorphism of A onto Af. Therefore, f is not a strong topological divisor of zero.

For a Banach algebra B we use ∂B to denote the Šilov boundary of B. The next lemma is a generalization of Corollary 3.3.7 in [4].

LEMMA 2.2. Suppose $f \in A$ and hull (f) is compact. Then f is not a strong topological divisor of zero in A if, and only if, there is an integer n such that for $j \ge n$, hull $(f) \cap \partial B_j = \emptyset$.

Proof. Suppose that for every positive integer n there is a positive integer j such that $j \ge n$ and hull $(f) \cap \partial B_j \ne \emptyset$. Then, without loss of generality we can assume that hull $(f) \cap \partial B_j \ne \emptyset$ for $j = 1, 2, \cdots$. For each integer j and open neighborhood U of hull (f) we can choose an element g(j, U) of A such that $|g(j, U)|_{U \cap X_j} = 1$ and $|g(j, U)|_{X_j-U} < j^{-1}$.

Order the pairs (j, U) consisting of a positive integer j and an open neighborhood U of hull (f) by $(j, U) \ge (i, V)$ if, and only if, $j \ge i$ and U is contained in V. With this ordering $\{g(j, U)\}$ is a net in A.

Fix a positive integer k and an $\varepsilon > 0$. Choose an open neighborhood V of hull (f) such that $|f|_{v} < \varepsilon$. Then for $j \ge \max(k, \varepsilon^{-1}|f|_{x_{k}})$ and U contained in V we have, $|g(j, U)f|_{x_{k}} < \varepsilon$. Therefore $\lim_{(j,U)} |g(j, U)f|_{x_{k}} = 0$. Since k was arbitrary we have that g(j, U)f converges to zero in A.

Since hull (f) is compact and X is locally compact there is an open neighborhood W of hull (f) which is pre-compact. Since W is pre-compact there is an integer n such that W is contained in X_j for $j \ge n$. Then for $(j, U) \ge (1, W)$ we have $1 \le |g(j, U)|_W \le |g(j, U)|_{x_n}$. Hence, $\{g(j, U)\}$ does not converge to zero in A. Therefore f is a strong topological divisor of zero in A.

Suppose there is an integer n such that for $j \ge n$ we have hull $(f) \cap \partial B_j = \emptyset$. Assume $\{g_i\}$ is a sequence in A such that $\lim_i (g_i f) = 0$. Fix a positive integer k greater than n. Let $\delta =$

min $\{|f(x): x \in \partial B_k\}$. Since hull $(f) \cap \partial B_k = \emptyset$ we have that δ is greater than zero. Now $\delta |g_i|_{x_k} = \delta |g_i|_{\delta B_k} \leq |g_i f|_{x_k}$. Combining this estimate on $|g_i|_{x_k}$ with $\lim_i |g_i f|_{x_k} = 0$ we have that $\lim_i |g_i|_{x_k} = 0$. Since the only restriction on k was that k be greater than n we have that $\{g_i\}$ converges to zero in A. Therefore f is not a strong topological divisor of zero.

LEMMA 2.3. If $x \in X$ and $f \in A$ such that ker (x) = Af, then there is an integer n such that x is not an element of ∂B_j for $j \ge n$.

Proof. Lemma 2.1 implies that f is not a strong topological divisor of zero in A. Since $Af = \ker(x)$ we have that hull $(f) = \{x\}$. Lemma 2.2 implies there is an integer n such that $x \notin \partial B_j$ for $j \ge n$.

Recall that π_n is the natural projection of A into B_n .

LEMMA 2.4. If $x \in X$ and $f \in A$ such that ker (x) = Af, then there is an integer n such that $B_j\pi_j(f)$ is a maximal ideal in B_j for $j \ge n$.

Proof. Lemma 2.3 implies that there is an integer n such that x is not contained in ∂B_j for $j \ge n$. We may assume, without loss of generality, that x is contained in X_j for $j \ge n$.

Fix $j \ge n$. Since hull $(f) \cap \partial B_j = \emptyset$, we have that $B_j \pi_j(f)$ is closed in B_j . Since Af is a closed maximal ideal in A we have that A = Af + C. Hence $\pi_j(A)\pi_j(f) + C$ is dense in B_j . Therefore $B_j\pi_j(f) + C$ is dense in B_j . Since $B_j\pi_j(f)$ is closed in B_j we have that $B_j = B_j\pi_j(f) + C$. This proves that $B_j\pi_j(f)$ is a maximal ideal in B_j .

The following lemma appeared in [5]. Consequently we will merely sketch a proof.

LEMMA 2.5. If x is a point of X and x is isolated in each X_n which contains it, then x is isolated in X.

Proof. Suppose x is isolated in each X_n which contains it. We use Silov's idempotent theorem on the Banach algebras B_n and the fact that the only idempotent in the radical of a Banach algebra is zero to obtain an idempotent e in A such that e(x) = 1 and e = 0 elsewhere on X.

THEOREM 2.6. Suppose that A is a commutative uniform F-algebra with unit and that the spectrum X of A is locally compact.

If x is a nonisolated point of X and ker (x) = Af for some $f \in A$, then there is an open subset U of X such that $x \in U$, f maps U homeomorphically onto an open disc Δ in C, and gf^{-1} is analytic on Δ for each $g \in A$.

Proof. Lemma 2.4 allows us to choose an integer n_1 , such that $B_j\pi_j(f)$ is a maximal ideal in B_j for $j \ge n_1$. Since x is not isolated we can use Lemma 2.5 to obtain an integer n_2 such that x is not isolated in X_j for $j \ge n_2$. Since X is locally compact x has a precompact open neighborhood W. There is an integer n_3 such that W is contained in X_j for $j \ge n_3$.

Fix an integer k such that $k \ge \max(n_1, n_2, n_3)$. Then $B_k \pi_k(f)$ is a nonisolated maximal ideal in B_k . Gleason proved in [2] that there is an open neighborhood V_1 of x in X_k and a disc \varDelta' about the origin in C such that $\pi_k(f)$ maps V_1 homeomorphically onto \varDelta' , and $g\pi_k(f)^{-1}$ is analytic on \varDelta' for each $g \in B_k$. Set $V_2 = V_1 \cap W$ where W is the open set defined in the previous paragraph. Let \varDelta be an open disc centered at the origin of C such that \varDelta is contained in $f(V_2)$. Set $U = f^{-1}(\varDelta) \cap V_2$. Then U is an open neighborhood of x in X, f maps U homeomorphically onto \varDelta , and gf^{-1} is analytic on \varDelta for each $g \in A$.

COROLLARY 2.7. Suppose that A is a commutative uniform Falgebra with unit, and that the spectrum X of A is locally compact and has no isolated points. If every closed maximal ideal in A is principal, then X can be given the structure of a Riemann surface in such a way that A is topologically isomorphic to a closed subalgebra of Hol (X).

Proof. It follows from Theorem 2.6 that for each point x of X we can choose $f_x \in A$ and an open set U_x containing x such that f_x maps U_x topologically onto the open unit disc in C and gf_x^{-1} is analytic on the open unit disc for each $g \in A$. Let x and y be elements of X such that $U_x \cap U_y \neq \emptyset$. Then $f_x \circ f_y^{-1}$ is an analytic map of $f_y(U_x \cap U_y)$ onto $f_x(U_x \cap U_y)$. Therefore the set $\{f_x : x \in X\}$ is a set of local coordinates for X with respect to which $A \subset \operatorname{Hol}(X)$.

EXAMPLE. We give an example of a nonuniform *F*-algebra *A* such that (1) every maximal ideal in *A* is principal, and (2) *A* has no analytic structure. Thus the restriction to uniform algebras in Theorem 2.6 and Corollary 2.7 is essential. We note that the example shows that Gleason's result does not extend to nonuniform *F*-algebras. Let $A = C^{\infty}(R)$ with seminorms $\{|| \cdot ||_n\}$ defined by $||f||_n = \sum_{i=0}^n (1/i!) \max\{|f^{(i)}(x)|: x \in [-n, n]\}$. With respect to these seminorms

A is an F-algebra. We list below some of the properties of A.

562

(1) A is (singly) generated by the function f defined by f(x) = x for each $x \in R$.

(2) A is semisimple.

(3) Spec A = R; hence, Spec A is locally compact and connected, but Spec A contains no discs.

(4) Every closed maximal ideal in A is principal.

Properties 1, 2, and 3 are clear. There are several ways to prove property 4. The most elementary is to show that for any g in Asuch that g(0) = 0 the function h defined by

$$h(x) = egin{cases} x^{-1}g(x), & ext{if} \quad x
eq 0 \ g^{(1)}(0), & ext{if} \quad x = 0 \end{cases}$$

is in A. This can be accomplished by an induction argument using l'Hospital's rule and the mean value theorem. Once we have shown h is in A we have g = hf. This shows that the maximal ideal consisting of all functions which vanish at zero is Af. Clearly, a similar argument establishes that all closed maximal ideals are principal.

3. Remarks. We have proved that Gleason's result extends to principal ideals in uniform F-algebras with locally compact spectra. We have also produced an example to show that it does not extend even to principal ideals in nonuniform F-algebras. The obvious question is: does Gleason's result remain valid for finitely generated ideals in uniform commutative F-algebras with unit? At the present time we do not know the answer to this question.

BIBLIOGRAPHY

1. N. Dunford and J. Schwarz, *Linear Operators*, vol. 1, Interscience, New York, 1958.

2. A. Gleason, Finitely generated ideals in Banach algebras, J. Math. Mech. 13 (1964), 125-132.

3. E.A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952).

4. C. E. Rickart, Banach Algebras, Van Nostrand, Princeton, 1960.

5. M. Rosenfeld, Commutative F-algebras, Pacific J. Math. 16 (1966), 159-166.

Received September 11, 1969. This paper is based on a portion of the author's doctoral dissertation which was written at the University of Utah under the supervision of Professor R. M. Brooks. The author's graduate work at the University of Utah was supported by an N.D.E.A. Graduate Fellowship.

UNIVERSITY OF UTAH Salt Lake City, Utah

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON Stanford University Stanford, California 94305

University of Washington Seattle, Washington 98105 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS

University of California Los Angeles, California 90024

ASSOCIATE EDITORS

F. WOLE

E. F. BECKENBACH

RICHARD PIERCE

B. H. NEUMANN

K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON * * * AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION TRW SYSTEMS NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. **39**. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is \$8.00; single issues, \$3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues \$1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

Pacific Journal of Mathematics Vol. 35, No. 3 November, 1970

John D. Arrison and Michael Rich, <i>On nearly commutative degree one algebras</i>	533
Bruce Alan Barnes, Algebras with minimal left ideals which are Hilbert spaces	537
Robert F. Brown, An elementary proof of the uniqueness of the fixed point index	549
Ronn L. Carpenter, <i>Principal ideals in F-algebras</i>	559
Chen Chung Chang and Yiannis (John) Nicolas Moschovakis, The Suslin-Kleene	
theorem for V_{κ} with cofinality $(\kappa) = \omega$	565
Theodore Seio Chihara, The derived set of the spectrum of a distribution	
function	571
Tae Geun Cho, On the Choquet boundary for a nonclosed subspace of $C(S)$	575
Richard Brian Darst, The Lebesgue decomposition, Radon-Nikodym derivative,	
conditional expectation, and martingale convergence for lattices of sets	581
David E. Fields, <i>Dimension theory in power series rings</i>	601
Michael Lawrence Fredman, Congruence formulas obtained by counting	
irreducibles	613
John Eric Gilbert, On the ideal structure of some algebras of analytic functions	625
G. Goss and Giovanni Viglino, Some topological properties weaker than	
compactness	635
George Grätzer and J. Sichler, On the endomorphism semigroup (and category) of	(2)
bounded lattices	639
R. C. Lacher, <i>Cell-like mappings.</i> II	649
Shiva Narain Lal, On a theorem of M. Izumi and S. Izumi	661
Howard Barrow Lambert, <i>Differential mappings on a vector space</i>	669
Richard G. Levin and Takayuki Tamura, <i>Notes on commutative power joined</i>	
semigroups	673
Robert Edward Lewand and Kevin Mor McCrimmon, <i>Macdonald's theorem for</i> <i>quadratic Jordan algebras</i>	681
J. A. Marti, On some types of completeness in topological vector spaces	707
Walter J. Meyer, <i>Characterization of the Steiner point</i>	717
Saad H. Mohamed, <i>Rings whose homomorphic images are q-rings</i>	727
Thomas V. O'Brien and William Lawrence Reddy, <i>Each compact orientable surface</i>	
of positive genus admits an expansive homeomorphism	737
Robert James Plemmons and M. T. West, <i>On the semigroup of binary relations</i>	743
Calvin R. Putnam, Unbounded inverses of hyponormal operators	755
William T. Reid, Some remarks on special disconjugacy criteria for differential	
systems	763
C. Ambrose Rogers, The convex generation of convex Borel sets in euclidean	
space	773
S. Saran, A general theorem for bilinear generating functions	783
S. W. Smith, <i>Cone relationships of biorthogonal systems</i>	787
Wolmer Vasconcelos, On commutative endomorphism rings	795
Vernon Emil Zander, <i>Products of finitely additive set functions from Orlicz</i>	
spaces	799
G. Sankaranarayanan and C. Suyambulingom, <i>Correction to: "Some renewal</i>	
theorems concerning a sequence of correlated random variables"	805
Joseph Zaks, <i>Correction to: "Trivially extending decompositions of Eⁿ"</i>	805
Dong Hoon Lee, Correction to: "The adjoint group of Lie groups"	805
James Edward Ward, Correction to: "Two-groups and Jordan algebras"	806