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Many topological properties may be described by covering
relations which may also generally be easily described in
terms of filter relations. For example, a space is compact if
and only if each open cover of the space contains a finite
subcover, or equivalently, if each filter has an adherent point.
In this paper, characterizations are given of some topological
properties weaker than compactness, both in terms of filters
and coverings. In the final section a question posed by Viglino
and by Dickman and Zame is answered.

2 Definitions and notations* (a) A space for which distinct
points may be separated by disjoint closed neighborhoods (i.e., a
Urysohn space) will be labeled a T2{l!2)-space. Let v = 2, 2£, or 3. A
TVspace is said to be Tv-closed if it is closed in each ΪVextension.
A TVspace (X, r) is said to be Tv-minimal if there exists no Tv

topology on X strictly weaker than τ.
(b) A Hausdorfϊ space (X, τ) is C-compact if given a closed set

Q of X and a τ-open cover £? of Q, then there exists a finite number
of elements of £?, say 0;, 1 <£ i ^ n, with Q c c l x U?=iO<

(c) A Hausdorff space X is functionally compact if for every
open filter ^ in X such that the intersection A of the elements of ^
equals the intersection of the closures of the elements of ^ , then *%S
is the neighborhood filter of A.

(d) A filter is open (closed) if it has a base of open (closed) sets.
A regular filter is a filter which is both open and closed.

(e) Let A be a subset of a space X. An open cover, ^ , of A
will be said to be a Urysohn cover if for each xe A there exist ele-
ments Ox, 02 of ^ with x eOiCcl (^cOg.

(f) Let A be a subset of a space X. An open cover, £f, of A
will be said to be a strong cover if for each xe A there exist
{0 n }~ = 1 c^ with xeO, and clO^cO^ for each ί.

(g) A closed subset Y of a space X is regular closed if given
xeX\Y, then there exists an open set 0 with xeOa c lOc Y\

3* Covering theorems* Filter characterizations for TVclosed
and ^-minimal spaces are listed below. The proof of (a) may be
found in [2]; (b) in [l]; (c), (d), and (e) in [5]; (f) in [4].

THEOREM I. (a) A T2-space is T2-closed if and only if every
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open filter has an adherent point.
(b) A T2-space is T2-minimal if and only if every open filter

with unique adherent point converges.
(c) A T2iU2)-space is T2iU2)-closed if and only if for each two open

filters J^l, j^l and each closed filter ^l such that ^ c ^ c ^ " , then
^~l has an adherent point.

(d) A T2(lf2)-space is T2{ιl2)-minimal if and only if for each two
open filters ^[, J^l and each closed filter ^l such that j^aj^aj^
with Jβ^l having a unique adherent point, then ^l converges.

(e) A Tzspace is TΓclosed if and only if every regular filter
has an adherent point.

(f) A T3-space is T^minimal if and only if every regular filter
with unique adherent point converges.

Of the six properties listed in the above theorem, only the first
has a well known covering characterization. (See Theorem II (a'),
below). Herrlick has listed in [5] covering characterizations for T2(1/2)-
closed and Γ3-closed spaces. We list in the following theorem covering
characterizations for each of the six properties. These characteriza-
tions emphasize the relationship between TVclosed and ^-minimal
spaces. The proof of each part of Theorem II follows from its coun-
terpart in Theorem I. We offer proofs for parts (d') and (f).

THEOREM II. (a') A T2-space X is T2-closed if and only if given
an open cover, έ7, of X, then there exists 0{ e &, 1 ^ i Ŝ n, such that

(b') A T2space X is T2-minimal if and only if given pe X, an
open cover, έ?, of X\{p}, and an open neighborhood U of p, then
there exist Oiβ^l^i^n, such that X = U[J cl U?=i °i

(cr) A T2{φrspace X is T2{φrclosed if and only if given a Urysohn

cover, %S of X, then there exist 0̂  e ^, 1 ^ i S n, such that X =

cl \JU 0,.
(d') A Tuιj2)-space X is T2{ιl2)-minimal if and only if given peX,

a Urysohn cover, ^ of X\{p} and an open neighborhood U of p,
then there exist 0 { e ^ , l ^ i ^ n , such that X = f/Ucl U?=i O

(e') A T^-space X is TVclosed if and only if given a strong
cover, &, of X, then there exist OiβSil^i^n, such that X = (JiU0*.

(f) A TS'Space X is Trminimal if and only if given p e l , a
strong cover, S^, of X\{p], and an open neighborhood U of p, then
there exist Oiβ^lSi^n, such that X= U[j U?=ι 0<

Proof of (d') Let peX, U an open neighborhood of p, and <%S
a Urysohn cover of X\{p} such that the union of the closure of any
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finite number of elements of ^ fails to cover Uc. Since X is T2{ιj2)1

we may assume that for each x e X\{p} there exist Oi, 0* in ^ with
x eOicclOicO^, and pφ§\. Let J*^ denote the filter generated by
{0Ϊ}.βz/{p}» ̂ Γ t h ^ filter generated by {0iβ}ββz/{J>}, and J^7 the filter
generated by {0lc}xeχi[P}- Then ^ c ^ Γ c ^ w i t h p the only adherent
point of ά?\ and ^l not converging.

Conversely, let ^7c t _^7c:^' with ^ Γ having a unique adherent
point, p, and &l not converging. Let U be an open neighborhood
of p which contains no element of J*l. Then, ^ = {F[\Fγ e ^\} U
{Fs/F3e^} is a Urysohn cover of X\{p} such that union of the
closure of any number of elements of Ήf fails to cover Uc.

Proof of (f). Let p e l , U an open neighborhood of p, and ^
a strong cover of X\{p} such that the union of any finite number of
elements of S^ fails to cover Uc. Since X is Γ3, we may assume
that for each x e X\{p} there exist a sequence {0j}~=1 of elements of
Sf with xeOi, clθ:cθϊ + 1 and p£θ£ for any n. Now, the filter
generated by {0^c/x e X\{p}; n = 1, 2, 3, •} is regular with unique
adherent point, P, and does not converge.

Conversely, let ^ be a regular filter with unique adherent
point, p. Let U be an open neighborhood of p which contains no
element of J C Then {Fc/Fe^} is a strong cover of X\{p} and no
finite union of elements of this cover contains Uc.

By replacing in Theorem II (b') the point, p, by a closed (regular
closed) set, we obtain the covering characterization for C-compact
(functionally compact) spaces listed below. The proof follows easily
from definition b (c).

THEOREM III. A T2-space X is C-compact (functionally compact)
if and only if given a closed (regular closed) subset C of X, an open
cover έ?, of X\C, and an open neighborhood U of C, then there exist
0i G έ?, 1 ^ i ^ n, such that X = Uijcl UΓ=i 0*.

4* A counterexample* One can easily show that every con-
tinuous function from a C-compact space into a Hausdorfϊ space is
closed [6]. The question as to whether or not the converse is valid
was posed in [6]. Dickman and Zame [4] have since then shown
that a necessary and sufficient condition that a Hausdorff space be
functionally compact is that each continuous function of the space
into a Hausdorff space be closed. We resolve the question posed in
[6] by constructing, in the following example, a space which is func-
tionally compact but not C-compact. The example is a modification
of that given in [4] showing that a functionally compact space need
not be compact.
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EXAMPLE. Let 1 = [0,1]. For each integer n ;> 2, let {αj}7=1 be
a strictly decreasing sequence in (1/n, 1/n — 1) converging to 1/n.
Let JSΓ= AUίli{αί} Topologize X as follows: Let X\({l/w}~=1 U {0})
retain the usual topology. Let a neighborhood system of the point
0 be composed of all sets of the form {x e X/\ x \ < l/m}\{l/w}~=1, m an
integer. Let a neighborhood system of the point 1/n be composed
of all sets of the form 0f]X where 0 is an open set in I with
{1/n, α»_i> αi_8, •• , α?"1/2}cθ in the case that n is odd, and with
{1/n, αUi, α2

w_3, •• ,αf/ 2"1}cθ in the case that n is even (where for
n = 2 we simply have {1/2}). Clearly X is Hausdorff. Let 02n =
{x e X/\x - l/2n\ < 1/Sn} U UEi1 {̂  eX/\x - ain_2i+1 \ < l/3n} for each
n > 1. Then {02n}n>ι is an open cover of the closed set {l/2n}n>ί and
the closure of any finite union of elements in {02»}w>i fails to contain
{l/2n}n>1. Hence, X is not C-compact. We apply Theorem III and
show that X is functionally compact.

Let C be a regular closed subset of X, έ? an open cover of X\C,
U an open neighborhood of C. Suppose first that C contains infinitely
many elements of {l/w}~=i. Then by the regularity of C, {l/w}^=1U
{0}cC so that X\U is compact. Suppose that OeC and that only
finitely many elements of {l/w}~=1 are contained in C. Choose l/2n
and l/2n + 1 such that neither is in C. Let 02n, 02w+1 be elements of
^ containing l/2n and l/2n + 1 respectively. Then, {1/n/n ^ k}a
cl (02n U 02n+1) for some k. It is easy to see that the closure of a finite
number of elements of & contains X\(cl (02w U 02%+1) U U). Suppose
that 0 ί C and that only finitely many elements of {l/n}~=1 are con-
tained in C. Once more let 02ny 02Λ+1 be elements of 0* containing
l/2n and l/2n + 1 respectively, with neither l/2n nor l/2n + 1 in C.
Let 0; be an element of & containing 0. It is easy to see that the
closure of a finite number of elements of & contains X\(cl (0̂  U 02n U
02ίι+i) U U). Hence, X is functionally compact.
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