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This paper establishes a theorem on the absolute Norlund
summability of Fourier series which generalizes and unifies
generalizations by the author and by M, and S, Izumi of an
earlier result by McFadden,

Let >, a, be a series with partial sums S, and let p, be a
sequence of real constants with

Pn:Z.opv, po>0y P_lzp*lzo.
The series Y, a, is said to be summable | N, p,| if

th%—_tn—li <L ooy,
n=1

where

1

1.1 t, =
(1.1) 2

;) pn—vsv .

We write P(f) = P,; and in the sequel we assume that p, is
nonnegative, nonincreasing and lim,_.. p, = 0.

2. Let f(t) be a periodic function with period 27 and integrable
(L) in (—m, ). The Fourier series of f(¢) is

-;—ao + i (@, cos nt + b, sin nt) = i A,
n=1 n=0

where a, and b, are given by the usual Euler-Fourier formulae. We
write

¢(t) = flo + 1) + flw — 1) — 2f(x) ,

a(t) = 3, p, cos vt , Bt) = S p,sin ot ,
=0 =0

a, = S:qi(t)a(t) cosntdt, B, = S:;b(t) 8(t) sin né dt ,

w(d) = sup [fiw +¢) — fl@)].

0=|t|<d

p and ¢ are mutually conjugate indices in the sense that 1/p+1/¢=1.
Recently M. Izumi and S. Izumi ([2, Th. 3]) proved the following
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THEOREM A. Let {p,}be a positive decreasing and convex sequence
tending to zero and satisfying the condition

imw4<w, l<p=g2).
If the modulus of continuity @w({0) of f satisfies the conditions

. )

n=1 ,nl/q Pn

< oo,

and
1 < C !

T e

then the Fourier series of f is | N, p,| summable.

2.1)

s

In this note we prove that the condition (2.1) of the above
theorem is redundant in that the assertion of the theorem holds
© without the condition (2.1) as well. The final result is then embodied
in the following

THEOREM. Let {p, — D...} be a nonincreasing sequence and

8

(2.2) pint~t < C, 1<ps2).
1

n

i

If the modulus of continuity of the continuous function f(x) satisfies
the condition

(2.9) S\ ()P < C
then the Fourier series of f is | N, p,| summable.

It is known that (see [4, Chapter XII, proof of Lemma 6.6])
the condition (2.2) of the theorem implies that

S‘z“P,‘:n—z < C.

Also it is easy to show that the above condition implies the condi-
tion (2.2) of the theorem. Since p, is nonnegative and nonincreasing

1 Throughout the paper C denotes a positive constant, not necessarily the same
at each occurrence.
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we have np, < P, and therefore

oo

> phmPt éi Prn.
n=1 n=1

Thus the conditions (2.2) and 37, P’n~2 < C are equivalent. In
view of this equivalence it follows that the theorem established
here generalises an earlier result of the author [3] as well.

3. The following lemmas are required for the proof of the
theorem.

LemMA 1. Under the condition (2.2) of the theorem

S:'"w(t)P(t—l)dt < Co(n-n-1 .

Proof. Remembering that the condition (2.2) of the theorem
implies that

ni:‘,l Pin? < C,
we have
S:’"w(t)P(rl)dt < i 0w )Py
= [ 5wy [ 5 P ]”
< Co(nHn'*t, _

which is equivalent to the assertion of the lemma.

LEMMA 2. ([4, Chapter XII, Lemma 6.6]). For the function
a(t) to belong to the class LP(p > 1) it 1s mecessary and sufficient
that the condition (2.2) of the theorem is satisfied.

LeEmMA 3. ([1, Lemmas 5.11, 5.14 and 5.32]). If p, is non-
negative and nonincreasing, then for 0 < a <b < oo, 0 <t <7 and
any n

(3.1) | S pe| < CPGY
3.2 < ( Dy pv+1) 1
(3.2) 5 Ue el < o,

and
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(3.3) P2 < CP@2™),

as N — co,

LEmMA 4. ([3, Lemma 5.20]). If p, is nonnegative and non-
inereasing and if we take

P eivt
v

Ms

7(t) =

v=0

then for t in (h, )
[Y(t + 2h) — 7(t)| < Cht'P(h7") .
LEmMMA 5. ([1, see proof of Lemma 5.16]). If p, is nonnegative

and monincreasing, lim, ..p, =0 and {p, — D...} 1S nonincreasing,
then

1 S ¢(t){§lnpv cos (n — v)t + 2 p”P cos (n — v)t}dt}

P,
= CP%_l [ F o + P%_l]g | 6(2) | P(¢~)e"dt

LEMMA 6. ([2]). Under the conditions (2.2) and (2.3) of the

theorem
o(3)
n
n

4. Proof of the theorem. For the Fourier series

[

=C.

oo
>
n=1

S,(x) — flx) = —S ¢(t)< + 2 cos Ict)dt

so that from (1.1) and Abel’s transformation we have

Tty =ty
S:’b(t){g(ﬂ};_l - 1;’;””: >cos (v + 1)t}dtl
1

" PP, So¢(t) > (0.P, — p,P.) cos (n — )t dt.

= ‘ Pi_j:qs(t)(i; D, €08 (n — v)t)dt

w Pnln_lg ¢(t)(Z 2,P, cos (n — v)t + Z 2.P, cos (n — v)t)dt’
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1

n—1

IA

S:gz&(t)ﬁ(t) sin nt dt

S:qs(t)a(t) cos nt dtf +

2 Sllnqs(t) 2 P, co8 (n — V)t dt]

VY
+ Lm
PP,

L[, $0{S prcos o — e+ 5 B cos n = ]

n—1

("5 5 Py cos (n - oyt i

+

M-

[ |, say.

From (4.1) and the definition of the absolute Norlund summability
it is clear that for establishing the theorem we have to prove that

(4.2) Ser| < e, (r=1,2 5.
n=2
Now
- w 2
leif’I:Z 2 e, | P
n=2 A=1 n=24—1 +1
4.3) =5( 5 ) (3 Pa)”
A=1 \p=22—141 n=22— 1+1
= o /
< C%zz/pp~l(21) 2:', Ia sin —— 22“ ’ u

making use of (3.3) of Lemma 3.

Since the function ¢(¢t) is bounded in [0, 7] and by Lemma 2,
under the condition (2.2) of the theorem, a(¢)e L?, it follows that
s(ta(t)e L*. Also, it is known [1] that the Fourier series of
#(t + h)a(t + h) — ¢(t — h)a(t — h) is —4/r 3, «, sin nt sinnh, and
therefore by Hausdorff-Young inequality we get

[ ?lq
(g;l |, sin nh l")
< CD 6t + B)a(t + ) — ¢t — Wa(t — k) [Pt
= 19t + b) = p(t — W) |7 a(t + by "dt
cg”l alt + k) — at — h)|?| 6@t — h) Pde
(4.4)
< Cw"(h)g |\t + h)?dt + Cg la(t + 2R) — a(t) P | 6(0) [7dt

< Co(h) + CS w*(|¢]) | alt + 2h) |7dt
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+ Cgihw"(ltl) |a(?) [*dt + CS:; a(t + 2h) — a(t) Por(t)dt

< Caw*(h) + Chppr(ml)g”wp(t)t—?dt
h

using Lemma 4 and remembering that by virtue of Lemma 2, a(t) € L.
Taking h = m/2*** in the estimate (4.4) and then substituting it
in (4.3) we have

AP
0% WP_I(Zl)[“’p( )+ 2 “’P”(2‘)S e a)"(t)t“"dt]”p
) + CZ 92/p)— 1)<§ ,1+1wt_§t) )

(4.5) =< Ci a)<_7£>P;1n—1/q + C;’:L2/1(<1/p>—1){<glhr 4 Sl ) a);(t:) dt}

IA

¢ 3 2eP@)o(5,

+ CZ 27((1Ip)—1) Z ( 2§:m' a)"(n~1)n1’—2>1/p

m=1 \p=gm—1lyy

é C + C Z 2””(1~—(1/P))w(2—m)12 21((1IP)—-1)
m=1 =m

l]/\

<C+ CYonYn'=C,

by virtue of the condition (2.3) of the theorem and Lemma 6.
Similarly, we can prove that

(4.6) i:‘.zlxiﬂ < oo
Also,

Sl <CS, P,::lg”"w@)P(t—*)dt
(4.7) n=2 n:Z 0
< CS 0@ )P < C,

by the application of (3.1) of Lemma 3, Lemma 1 and the condition
(2.3) of the theorem.

For the proof of

(4.8) Slev| < C,

see the proof of 37, K, < « in [2]. Finally, by Lemma 5 we have
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oo

(5)
z o
< ~ D C ~ [n(p'n _ pn%—l) D ]Sﬁ ot P t—l t——ldt
=Cx S +CX o + a2 @) P

+C 2‘1 7 2;”;_1 vZ; o )Pw!

S MUDn = Dur) _ -1
+ Cg_‘,l 7D v=lw(v 1)Pw

<C+CS ww)PoS —Pn

v=1 n=v I)”L‘Pn_1
+C S 0Pt Y, ﬁ(plg_—P_Qﬁi
v=l n=v Py

<C+Clow)" <C,

by the application of the estimate (3.2) of Lemma 3 and Lemma 6.
Combining the estimates in (4.5) — (4.9) we find that (4.2) is
established. This completes the proof of the theorem.

I am thankful to the referee for his kind advice.
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