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EMBEDDINGS IN MATRIX RINGS

S. A. AMITSUR

For a fixed integer » = 1, and a given ring R there exists
a homomorphism p; R - M,(K), K a commutative ring such
that every homomorphism of E into an % X n matrix ring
M, (H) over a commutative ring can be factored through o by
a homomorphism induced by a mapping »: K — H, The ring
K is uniquely determined up to isomorphisms, Further pro-
perties of K are given,

1. Notations. Let R be an (associative) ring, M,(R) will denote
the ring of all » x » matrices over R. If #: R— S is a ring homo-
morphism then M,(9): M,(R) — M,(S) denotes the homomorphism
induced by % on the matrix ring, i.e., M,()){(ry) = @(:)-

If Ae M,(R), we shall denote by (A4);, the entry in the matrix
A standing in the (7, k) place.

Let k& be a commutative ring with a unit (e.g., ¥ = Z the ring
of integers). All rings considered henceforth will be assumed to be
k-algebras on which 1ek% acts as a unit, and all homomorphisms
will be k-homomorphisms, and will be into unless stated otherwise.

Let {z;} be a set (of high enough cardinality) of noncommutative
indeterminates over k, and put k[x] = k[---, x;, ---] the free ring
generated over k& with % commuting with the ;. We shall denote
by k°[x] the subring of k[x] containing all polynomials with free
coefficient zero.

Denote by X; = (¢, a,8=1,2,---, n the generic matrices of
order » over k, i.e., the elements {&. ;} are commutative indeterminates
over k. Let 4 = k[¢] = k[+-+, &5 -] denote the ring of all com-
mutative polynomials in the &’s, then we have k°[X] S k[ X] & M,(4)
where k[X] is the k-algebra generated by 1 and all the X;; k°[X] is
the k-algebra generated by the X; (without the unit).

There is a canonical homomorphism : k[x] — k[ X] which maps
also K'[x] onto k'[X] given by v (x;) = X,.

2. Main result. The object of this note is to prove the follow-
ing:

THEOREM 1. Let R bz a k-algebra, then

(1) There exists a commutative k-algebra S and a homomor-
phism p: R — M,(S) such that:

(@) The entries {[o(r)].s; re R} generate together with 1, the
ring S.
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(by For any o0: R— M/(K), K a commutative k-algebra, with a
unit, (but with the same n) there exists a homomorphism n: S— K such
that for the induced map M,(n): M. (S) — M,(K), we have the relation
M. = o, i.e., 0 is factored through p by a specialization M, (7).

(ii) S 1s uniquely determined up to an isomorphism by pro-
perties (a) and (b); and similarly o is uniquely determined up to a
multiple by an isomorphism of S. Given S, o and o then M,(n) is
uniquely determined.

(iii) If R is a finitely gemerated k-algebra them so is S. Thus
if k is noetherian, S will also be moetherian.

Proof. Before proceeding with the proof of the existence of (S, p)
we prove the uniqueness stated in (ii).

Let (S, p) (S, o) be two rings and homomorphisms satisfying (i),
then by (b) it follows that there exist 7: S— S, and 7,: S,— S such
that M.()o = oo, M, ()0, = 0. Hence, M, ()M, ()0 = p. Clearly
M) M, (n) = M,(m) and %m: S— S. For every r ¢ R, it follows that
olr)y = M, (mnpe(r) and so for every entry o(r),, we have

(0(7')01,;5 = (7707])[()(7”)]«):5 .

Thus, 7,7 is the identity on the entries of the matrices of p(R), and since
7,n are also k-homomorphism (by assumption stated in the introduction)
and these entries generate S by (a)—we have 7,7 = identity. Similarly
77, = identity on S, and 7, 7, are isomorphism, and in particular it follows
that o, = M,(n,)0 which completes the proof of uniqueness of S and p.

If 0: R— M,(K) is given and if there exist », »': S— K satisfy-
ing (1), i.e., M, (9)p = M, (7)o = o then M, (n)o(r) = M, (7")o(r) for every
r& R and thus for every entry o(v)., we have %[o(r).s] = 7'10(r)as],
and from the previous argument that all o(r),; generate S we have

n=7.

Proof of (1). We define a homomorphism o0 and the ring S as
follows: Tet {r} be a set of k-generators of R, and consider the
homomorphism onto: @,: k°[x] — R given by @, (x;) = r;, and let p =
Ker . Thus ¢ induces an isomorphism (denoted by @) between
k°[x]/p and R.

If " E[x] — K°[X] given by +(x;) = X;, then let P = v(p) the
image of the ideal p under +,. Hence 4, induces a homomorphism
(denoted by ) k[x]/p — E°[X]/P.

The ring k°[X] is a subalgebra of M,(4), so let {P} be the ideal
in M,(4) generated by P. Then {P} = M,(I) for some ideal I in 4,
since 4 contains a unit, I is the ideal generated by all entries of the
matrices of {P}. With this notation we put:



EMBEDDINGS IN MATRIX RINGS 23

S = 4/I and p be the composite map:
R — k[x]p — K X]/P— M (D/{P} — M, (4/I) = M,S).

Where the first map is @', the second map is . The map
v: K[ X]/P— M,(4)/{P}

is the one induced by the inclusion £’ [X]— M,(4) which maps, there-
fore, P into {P} and so v is well defined. The last map is the natural
isomorphism of M,(4)/{P} = M, (4)/M,(I) = M,(4/I), which correspond
to a matrix (u;) + M,(I) — (uy + I).

Note that 4 is generated by the &, and 1, thus, so 4/ = S is
generated by 1 and &, + I but the latter are the (agB) entries of the
matrices o(r;). Indeed, @~'(r;) = =; + p so that vo~'(r;) = X; + P so
that o(r).; = &, + I, which proves (a).

To prove (b) let 6: R— M,{K) a fixed homomorphism, then de-
fine » as follows:

Let o(»;) = (kis) € M(K), then consider the specialization 7,: 4 =
klé]— K given by n,(&is) = kis. We have to show that the homo-
morphism 7, maps I into zero and » will be the induced map 4/I — K.

Consider the diagram:

K]~ KX

|

R —> M.(K)

where the second column is actually the composite
kKlz] — M,(4) — M (K) ,

in which the first is the inclusion and the second is the map M, (7,),
we shall use the same notation M,(%,) to denote also this map. This
diagram is commutative since 7@, (x;) = 7(r;) = (ki;) and also

Mn(ﬁo)"!’o(%z) = Mn(Y]O)Xz = (7]0(52,@)) = (k;ﬂ)

by definition. Thus tp, = M,(9))v, on the generators and hence on
all k°[xz]. In particular, if plz]e p = ker @, then

0 = o (plx]) = M, (n)Vo(p[x])

which shows v,(p[x]) S Ker M,(,) and thus P = v,(p) & Ker M, ().
Consequently, the preceding diagram induces the commutative diagram

{O:
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Kla]/p - [ X]/P

d J

Let 7: K[ X]/P— M,(K) denote the second column homomorphism which
is induced by M,(,). Observe that 7(X; + P) = t(r;)(=M,(9)(X,)) since
(X + P) = 7¥(; + p) = cp(@; + p) = 7(ry).

To obtain the final stage of our map o we consider the diagram:

K[X] 25 M, (4)

'rl lMﬂ(Y]O)

RIX]/P -1 M(K)

where )\, is the injection, » is the projection. This diagram is also
commutative since

M.(IN(X) = M, (1) X; = ()o(&ia)) = (kis) = T(1)

and also 77(X;) = 7(X; + P) = z(r;). This being true for the gener-
ators implies that M. )» = 7r.

Now »(P) =0, hence M, )N(P) = 77#(P) =0 and as \(P) = P
(being the injection) it follows that P < Ker M,(n,). The latter is an
ideal in M, (4), hence Ker M, (n,) 2 {P}. Consequently M,(n,) induces
a homomorphism 7: M, (4)/{P} — M,(K) and we have the commutative
diagram (II):

KX]/P— M,(4)/iP}

N /
7N, VL
M.(K)
where )\ is the map induced by the injection g k°[X]— M,(4), and
A is well defined since A (P) € {P}. The diagram is commutative,
since

IMX; + P) = (X, + {P}) = M,()(Xy) = (1:ep) = (k) = (1)

and also 7(X; + P) = 7(r;) as shown above.

Another consequence of the existence of 7, is the faet that
%[} = 0 where {P} = M,(I). Indeed, as was shown {P} & Ker M,(%,)
so that M, (n,)({P}) = M,()I) = 0. Thus %, 4— K, induces a homo-
morphism 7: 4/I— K and hence the homomorphism

M, (7): M.(4/1) — M.(K)
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and we have a third commutative diagram (III):
M(H/{P} > M(4/T)

N /
N M
M.(K)

where p is the isomorphism M,(4)/P = M,(4)/M,(I) = M,(4/I). This
diagram is also commutative since 7(X; + P) = M, (9, )(X;) = ©(r;) as
before, and M, ()u(X; + P) = M, (1)) ((Eis + 1)) = (9éis) = T(r3).

Combining the commutative diagrams (I), (II) and (III) and noting
that @ is an isomorphism, and that we have defined p to be o =
o, we finally obtain

Mo = (M, ()b~ = (NyP™ = )P~ = tpp™ = ©

and this completes the proof of our theorem.

Note that for this ring S = 4/I, if R is finitely generated then
we can choose the set {x;} to be finite and, therefore, 4 is a k-poly-
nomial ring in a finite number of commutative indeterminate. Thus,
S = 4/I is a finitely generated ring. This will prove (iii) of (S, o)
defined above will satisfy (i) and the uniqueness of (ii) shows that
this property is independent on the definition of S and p.

3. Other results. The proof of Theorem 1, can be carried over
by replacing k°[x], X°[X] by the rings k[z], k[X] to the following
situation.

Consider rings R with a unit, and unitary homomorphisms, i.e.,
homomorphisms which maps the unit onto the unit. Then

THEOREM 2. There exists a commutative k-algebra S, with a
unit and a unitary homomorphism p,: R— M,(S,) which satisfies
(i)-(iii) of Theorem 1 when restricted only to unitary homomorphisms
d,: R— M,(K).

We remark that S, is not necessarily the same as S.
Another result which follows from the proof Theorem 1:

THEOREM 3. R can be embedded in a matriz ring M,(K) over
some commutative ring K, if and only if the morphism po: R — M,(S)
of Theorem 1 is a monomorphism. '

A mecessary and sufficient condition that this holds, s that
there exists a homomorphism @ of k°[X] onto R, and if P = Kero
then {P}N kK’ [X] = P.

If this holds for ome such presentation of R them it holds for
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all of them.

REMARK. It goes without changes to show that Theorem 3 can
be stated and shown for unitary embeddings.

The necessary and sufficient condition given in this theorem is
actually included in the proof of Theorem 2.11 (Procesi, Non-com-
mutative affine rings, Accad. Lincei, v. VIII (1967), p. 250) which
leads to the present result.

Proof. If p is a monomorphism then clearly R can be embedded
in a matrix ring over a commutative ring, e.g., in M,(S). Conversely,
if there exist an embedding ¢: R — M, (K), then since ¢ = M,(9)p by
Theorem 1 and ¢ is a monomorphism, it follows that o is a mono-
morphism.

The second part follows from the definition of p. Indeed p =
vyt where ¥ k'[x]/p — K[ X]/P is an epimorphism,

M RIX]/P— M (4)/{P} .

Thus, o is a monomorphism if and only if ¢ is an isomorphism and
A is a monomorphism. The fact that + is an isomorphism means
that K[ X]/P = k'[z]/p = R, and that )\ is a monomorphism is equiva-
lent to saying that Ker r, = K[ X] N {P} = P.

Thus if the condition of our theorem holds for one representation,
we can apply this representation to obtain the ring S and so the
given o will be a monomorphism; but then by the uniqueness of
(S, p) this will hold in any other way we define an S and an p. So
the fact that o is a monomorphism implies that £’ [X] N {P} = P for
any other representation of R.

A corollary of Theorem 1 (and a similar corollary of Theorem 2)
is that

THEOREM 4. Ewvery k-algebra R contains a unique tdeal @ such
that R/Q can be embedded in a matrix ring M, (K) over some com-
mutative ring, and if R/Q, can be embedded in some M, (K) the

QS Q.

Proof. Let p: R— M,(S) and set @ = Ker p. Then p induces a
monomorphism of R/Q into M,(S). If ¢ is any other homomorphism:
R — M,(K) then by Theorem 1 M,(n)p = ¢ so that

Ker (o) 2 Ker (0) = @

which proves Theorem 4.
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4. Irreducible representations. Let R be a k-algebra with a
unit' and % be a field. A homomorphism ¢: R-— M, (F), F a com-
mutative field, is called an irreducible representation if ®(R) contains
an F-base of M, (F'), or equivalently @(R)F = M,(F).

THEOREM 5. Let p: R— M,(S) be the unitary embedding of R
of Theorem 1, then o(R)S = M,(S) if and only if all trreducible
representations of R are of dimension = n, and then all representa-
tions of R of dimension n are irreducible.

Proof. In view of Theorem 1 it suffices to prove our result for
a ring S = 4/I obtained by a fixed presentation of R = k°[X]/P and
with {P} = M,(I).

Let 2 be the field of all rational functions on the &'s, i.e., the
quotient field of k[¢] = 4. By a result of Procesi (ibid.), ¥'[X]Q2 =
M,(2). Actually it was shown that k[X]Q2 = M,(2), but since

K1X]2 < M,(Q)

and any identity which holds in £°[X] will hold also in M,(Q) as such
an identity is a relation in generic matrices, it follows that A[X]Q
cannot be a proper subalgebra of M,(2) since these have different
identities. Hence, since every element of £ is a quotient of two
polynomials in & it follows that there exists 0 = % in 4 such that
he;. € E'[ X114 where e¢;, is a matrix base of M,(Q2). In particular this
implies that ¥°[X]4 2 M,(T) for some ideal T in 4 and, in fact, we
choose T to be the maximal with this property.

Next we show that in our case T + I = 4:

Indeed, if it were not so, then let m == 4 be a maximal ideal in
4m227T + 1. Let F= 4/m and o be the composite homomorphism
o:R— M(4/I)— M,(F). This representation must be irreducible,
otherwise o(R)F' is a proper subalgebra (with a unit) of M,(F) and,
therefore, it has an irreducible representation of dimension < #?% or else
o(R) is nilpotent but ¢(R) = ¢(R?, thus, B will have representations
which contradict our assumption. Hence, o0(R)F = M, (F).

Consider the commutative diagram

B[ X] —— M, (4)

L]

R ——— M,(4/I) — M,(F)

where o is the composite of the lower row, and denote by z the
composite ¢: k'[X]— M, (4) — M,(4/I) — M,(F). The first vertical

1 It is sufficient to assume that R% = R.
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map is an epimorphism hence z(k’[z]) = o(R). Consequently, since
o(R)F = M,(F), there exists a set of polynomials f.[X]e k' [X], A =
1,2, ---, n* such that z(f;) are a base of M, (F). This is equivalent
to the statement that the diseriminant ¢ = det (tr [¢(f,)z(f.)] # O,
where tr (-) is the reduced trace of M, (F).

Considering f; as elements of M,(4) and noting that the reduced
tr (-) commutes with the specialization 7,: 4 — 4/I— F, it follows that

0 # 0 = det (tr (f,.f)]) = det (z[fif)]) = woldet (tr(fof)]

and so det [tr(f.f,)] = D # 0 in M,(4) S M, (2). Hence {f;} is an Q-
base of M,(Q).

In particular ¢;, = 3, fil X]u,,.;, with u,,,, € 2. By multiplying each
equation by f, and taking the trace we obtain:

SUtr(fuf)Ura = by € d .

Eliminating these equations by Cramer’s rule we obtain Du, ¢ 4
where D = det[tr(f,f,)] which implies

De;, = > fil X1+ Duy i € K[ X]4 .

Namely De T. This leads to a contradiction, since then De T + I & m
and so D = 0 (mod m), and so 7(D) = 0 under the mapping

T d— 4/l - djm = F

but on the other hand z,(D) = o # 0.
This completes the proof that 7'+ I = 4. And so

M (4) = M(T) + M) S k[X]4 + {P} & M.(4) .
Applying M, (n): M,(4) — M,(S) to this equality we obtain
M(S) = M,)M,(4) = M,(n)(kIX14) = o(R)S
since n(I) = 0,7(4) = S and M, (k[X]) = o(R). Thus M,(S) = p(R)S.

Conversely, if M,(S) = o(R)S, then any homomorphism z: R —
M,(H) is irreducible. Indeed, = = M,(y)p for some 7: S— H. Hence
T(R)H 2 M,())[o(R)S] = M,(nS). Consequently, M, (H) & M,(nS)H <
T(R)H < M,(H) which proves that z is irreducible. The rest follows
from the fact that any representation z: R — M,(H) m < n could be
followed by an embedding M, (H)— M,(H) and since the composite
R — M,(H) must be irreducible we obtain that n = m, as required.

COROLLARY 6. If R satisfies an identity of degree = 2n, then
all irreducible representations of R are exactly of dimension n — if
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and only if p(R)S = M,(S).

Indeed, since the irreducible representation of such an algebra
will satisfy identities of the same degree, hence their dimension is
anyway < #°. Thus Theorem 5 yields in this case our corollary.

Another equivalent condition to Theorem b5, is the following:

THEOREM 7. A ring R has all tts irreducible representation of
dimension = n — if and only if there exists a polynomial flx,, «++, 2]
such that flz] = 0 holds identically in M,_ (k) and flr,+---,r]=1
for some r; € R.

Indeed, let R = k[k]/p and let m,_, be the ideal of identities of
M,_ (k). Then p + m,_, = k[z], otherwise, there exist a maximal ideal
m=29p + m,_, m = kjx]. Hence k[xz]/m is a simple ring and satisfies all
identities of M,_.(k) so it is central simple of dimension < #’. But
it yields also an irreducible representation of R of the same degree,
which contradicts our assumption. Thus k[z] = p + n1,, and so 1 =
flz] (mod p) with fem,_, and f satisfies our theorem.

The converse, is evident, since under any map o — M, (H), m <
n we must have

o(f[Tu M) Tk]) = f[g(Tl)’ ety O-(Vk)] =0

but fl», .-+, 7] =1. Hence, m = n.

REMARK. Examples of rings satisfying Theorem 5 are central
simple algebras of dimension %' over their center, and then p is a
monomorphism. Hence the relation po(R)S = M,(S) means that S is
a splitting ring of R, and in view of Theorem 1, it follows that S
is the uniquely determined splitting ring of R.
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