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Pseudocompactness and realcompactness can be defined in
a more natural and more general setting than the usual one.
One part of what is done here is simply to point out that
much of the theory of rings of continuous functions applies
without essential change in more general circumstances. The
discussion includes, for example, analogues of βX, vX, ^-ultra-
filters, C(X) and C*(X\ but all for a zero-set space, instead
of for a topological space.

There is another respect, besides greater generality, in
which the theory of zero-set spaces differs from that of topo-
logical spaces. Using the definitions of subspace and prod-
uct space which are obvious and natural for zero-set spaces,
this paper obtains, for such spaces, a number of results which
are known to fail for topologicai spaces. Most notably, a
product of any number of pseudocompact zero-set spaces is
pseudocompact, even though the product of just two pseudo-
compact topological spaces may fail to be pseudocompact.
Also a countable union of realcompact subspaces of a zero-set
space is realcompact; again the corresponding statement does
not hold even for two topological subspaces.

One approach to generalizing the concepts of pseudocompactness
and realcompactness has been made by Lorch [5]. What we do here
is, relying heavily on the work of Lorch, to go well beyond that
work by emphasizing particularly a special case, which is general
enough to include the important applications in analysis.

Let us set forth the matters of the preceding paragraph in
greater detail. Lorch starts with a uniformly closed ring of bounded
functions on a set X; here as elsewhere, we understand "function"
to mean "real-valued function." Given such a ring ^ , we may
consider the collection % of all zero-sets of functions in &\ i.e.,
the collection of all sets of the form {xeX\f(x) = 0} for all fe&.
Note that there can be a number of different rings & having the
same collection ^Γ of zero-sets. But whether X is pseudocompact,
with respect to some ,^?, in Lorch's theory turns out to depend only
on %Ί not on &\ the same holds for realcompact. Among the rings
& corresponding to any %* there is a largest one—and we depart
from the work of Lorch by fixing our attention on this largest one.
This largest ring consists of all bounded functions / such that f~ιFe β?
for every closed set F of real numbers, as will become clear in §2
below. Note that rings of continuous functions are the largest rings
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for their collections of zero-sets. But rings of Baire functions and
rings of measurable functions also have this property. In this paper
we begin with some %? and study especially the largest ring <%
which corresponds.

In the theory of Lorch, the ring & is a generalization of the
ring C*(X) of bounded continuous functions. But many theorems
about rings of continuous functions have reference to the ring C(X)
of all continuous functions. It is natural then to seek a generalization
for C(X) corresponding to & for C*(X). While serious difficulties
arise in the general case, we shall have no trouble in the case where
& has the maximality property of the preceding paragraph. Theorem
3.7 shows that three obvious definitions for the analogue of C(X)
coincide. This analogue appears in many of the theorems below;
for example, X is pseudocompact if and only if the analogues of
C(X) and C*(X) coincide.

We shall begin the development of our theory by giving the
definition of a zero-set structure. By a zero-set structure on a set
X we shall mean a collection ^ of subsets of X satisfying certain
set-theoretic axioms. These axioms are equivalent to the assertion
that ^Γ is the collection of zero-sets of a uniformly closed ring of
bounded functions. Recalling that proximity structures are in a
natural sense intermediate between topologies and uniform structures,
one is led to ask where zero-set structures fit in. The answer, which
becomes apparent in §3 and §4 below, is that zero-set structures fall
between topologies and proximity structures; additional details about
this point will be found in the body of the paper.

!• Notation and terminology*

1.1. We shall use the word "function" only in reference to a
real-valued function. Given a set X, the totality of functions on X
forms a ring with the operations specified by:

(/ + 9)(x) = f(x) + 9(x)

(fg)(χ) = f(χ)g(χ)

and a lattice with the operations specified by:

(fVg)(x) = τrmx(f(x),g(x))

(f A g)(x) = min (f(x), g(x)) .

Whenever we speak of a ring or a lattice of functions on X, we
mean always a subring or a sublattice of the ring or lattice of all
functions just mentioned. The constant function whose value at each
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point is a will also be denoted by a. It is well-known that if a
uniformly closed ring of bounded functions on a set X contains the
constants, then it is a lattice of functions, in the sense just specified.
Thus in particular, if it contains some /, it also contains / + , / " and
I/I defined by

/ + = / VO, / - = (-/)+

and I/I = / + + / - .

1.2. f"1 refers always to the inverse image; the symbol 1// is
used for the function defined by

If f: X—+ R, where of course R is the real numbers, then Zf denotes
/-'(O) and is called the zero-set of /.

1.3. All topologies which appear below are completely regular,
and we understand completely regular to imply Hausdorff.

Whenever we refer to a topology, proximity structure or uniform
structure on R, without further specification, we mean of course the
standard structure of the kind mentioned.

2* Definition of a zero-set space. We begin by giving the
abstract definition of a zero-set structure. Theorems 2.3 and 3.5 will
subsequently serve to explain the relationship to rings of functions
and to justify the use of the word "zero-set" in the definition.

DEFINITION 2.1. Let X be a set and ^ be a collection of sub-
sets of X. Suppose:

(1) For each pair of distinct points of X, there is a Z e %?
which contains just one of the points.

(2) ^r is closed under finite union; in particular, φe^.
(3) % is closed under countable intersection; in particular,

Xe T.
(4) Whenever A and Be 3? and A f] B — φ, then there are C

and DeST with A c X\C, B c X\D and (X\C) Π (X\D) = φ.
( 5 ) Whenever Ze%?, there are Z19 Z2, - - - e %r such that:

X\Z =\JZ%.
Λ = l

Then we call ^ a zero-set structure on X and call (X, %) a zero-set
space. We usually abbreviate by writing X for (X,

2.2. The totality of closed sets of a To topological space satisfies
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(1), (2) and (3) above. If the space is normal, (4) is also satisfied,
but (5) need not be. On the other hand, the closed sets of the space
Γ of [2, Exercise 3K] satisfy (5) but not (4).

THEOREM 2.3. Let X be a set and ^ be a uniformly closed
ring of bounded functions on X. Suppose ^ separates points and
contains the constants. Then

%• ={Zf\fe^//}

is a zero-set structure on X.

Proof. Certainly (1) of 2.1 is satisfied. Since φ e ̂ Γ and Z{fg) =
ZfuZg, (2) is satisfied. Since Xe %T and

fn\Λ2-n) = f\Zfn,
n—l n—L

(3) is satisfied. If A = Zf and B = Zg are disjoint, then the sets

C = Z(\g\ - | / | ) + and D = Z(\f\ - \g\)+

serve to verify (4). To verify (5) for Z = Zf, define

Zn = Z[\f\-(l/n)]~.

2.4. The following two lemmas will be needed later.

LEMMA. Let ,ζ& be a collection of subsets of X closed under
finite union and countable intersection. Let ^€ be the set of all
functions f with the property that f~lFe& for each closed set F
of R. Then ^// is a uniformly closed ring.

Proof. Let <£f = {X\A \Ae.^}; then <if is closed under finite
intersection and countable union. Also ^ is the set of functions /
such that f~ιUe ^ for every U open in R. Let f and f2e ~^€ be
given. Define g: X—> R x R by

Each open set of R x R is the union of countably many sets of the
form V1 x V2 where Vι and V2 are open in R. Since for each choice
of Vx x V2 we have

Q~ι{ Vi x V2) = frι Vι Π fi1 V2 e
 cέ? ,

g has the property that g-ιVer^ for each open V ot R x R. Since
the mappings δ: R x R —> i? and π: R x R -+ R defined by δ(α:, /5) =
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a — β and π{a, β) — aβ are continuous, δog and πog have the pro-
perty that the inverse image of an open set lies in <£". In other
words, /i — f2 = <5o# and /I/2 = πog belong to ̂ \ In short ^ is
a ring.

It remains to show that ̂  is uniformly closed. Let f19 f2, e ^
and let fn—>/ uniformly. It is enough to show f~ι{oc, β)e^ when-
ever a < β. For each positive integer k, choose nk such that

\fnk(x)-f(x)\<l/k

for all xe X. Let

£4 - fnl

k{a + I/A;, /9 -

Note £7* e £f and Ϊ7Λ c /-'(α, β) for all fc. But each x e f~ι{a, β) be-
longs to Uk for some k. Thus

/-^α, /8) = U Uk e ̂  .

LEMMA 2.5. Lβέ ̂ "0 6β α collection of subsets of X such that
for each pair of points of X there is a Ze %Ό containing just one
of them. Let %* be the collection of all countable intersections of
finite unions of sets in %~0. Suppose for each Ze %^ there is an f
such that both Zf = Z and f~ιFe 3? for every F closed in R. Then
^ is a zero-set structure on X.

Proof. Note first that given any function f on X with the pro-
perty that f-'Fe % for all F closed in R, then the function | / | Λ 1
also has this property and

Thus, letting ^/f be the totality of bounded functions on X with
the property and letting JT' be {Zf\fe^f}, we have ^ 0 c &'. By
Lemma 2.4, ^£ is a uniformly closed ring. Since we understand the
definition of ^Γ to imply φ and Xe^ί,^/? contains the constants.
Also ^£ separates points. Thus ^ ' is a zero-set structure on X.
We complete the proof by showing ^Γ = /Γ'; but, since %' a 3f
obviously, we need only show %* c ^Γ'. To this end, since %'t is
closed under countable intersection and finite union, it suffices to
recall 5f0 c JT'.

DEFINITION 2.6. Let (X, %T) be a zero-set space. We call the
sets in ̂ Γ zero-sets and we call their complements, with respect to
Xj cozero-sets.
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2.7. That the following definition actually describes a completely
regular topology will be apparent after Theorem 3.5 is proved.

DEFINITION. Given a zero-set space X, we endow X with a
topology by taking the cozero-sets as a base (for the open sets). In
other words, the zero-sets are a base for the closed sets.

2.8. Starting with a completely regular topological space, we
can of course define a zero-set space by using the zero-sets of the
continuous functions as the zero-sets of the structure. The topology
defined, in turn, by this zero-set structure is the original topology.
But, on the other hand, the same topology can arise from more than
one zero-set structure. For example, the Baire sets on a metric space
form a zero-set structure, which has for topology the discrete topology.

There are examples, however, of topological spaces which admit
unique zero-set structures. A topological space with a countable base
has this property. In fact, if the topology determined by a zero-set
structure has a countable base, every open set is a cozero-set, for
the given zero-set structure. To see this, we note that the cozero-
sets form a base for the topology and hence a countable subcollection
of them is also a base for the topology; thus every open set is a
countable union of cozero-sets, and hence is a cozero-set. Other ex-
amples of topological spaces which admit a unique zero-set structure
are those topological spaces which admit unique uniform structures;
this statement will become apparent in §"4.

3* Zerosβt functions*

3.1. If X and Y are zero-set spaces, we call a mapping φ: X—> Y
a zero-set mapping if φ~ιZ is a zero-set of X for each zero-set Z of
Y. Equivalently, φ is a zero-set mapping exactly when the inverse
image of every cozero-set is a cozero-set. That the composition of
two zero-set mappings is a zero-set mapping is almost too trivial to
mention.

In case Y = R, the cozero-sets of Y are precisely the open sets
of F—since we obviously take this statement as a definition of the
standard zero-set structure of R. Each of these open sets is a
countable union of open intervals. Thus f\X—>R is a zero-set
mapping exactly when the inverse image of each open interval is a
cozero-set.

3.2. We now endow each zero-set space X with a proximity
structure. By a proximity structure we mean a symmetric relation
on the set of all subsets of X satisfying the axioms stated below;
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Cech [1] calls such a structure a uniformizable proximity structure.
Rather than describing those pairs of subsets which are to be prox-
imal, we describe those which are to not be proximal, in other words,
are to be distal. We define two subsets of X to be distal if they
are contained in disjoint zero-sets. We list and check the axioms for
a proximity structure:

(1) A and B U C are proximal if and only if either A and B
are proximal or A and C are proximal.

If A and B [j C are distal, then A and B are obviously distal,
as are A and C. Conversely if A c Zlf A c Z2, B c Z3 and C c Z4

with Zλ Π Z3 = Z2 n Z4 = 0, then A c ^ ί l ^ B u C c ^ U ^ and
^ n ^ n (#3uz4) = 0.

(2) {x} and {̂/} are proximal if and only if x = y.
"If" is obvious. If x Φ y, we may use (1) of 2.1 to find a zero-

set Z containing just one of x and y. Say xe Z and y <$.Z. X\Z is
a union of zero-sets by (5) of 2.1; thus for some zero-set Z' c X\Z
we have ?/ e Zr.

(3) No subset of X is proximal to φ.
Obvious.
(4) If A and B are distal, then there are C and Z> such that

X — C U D, A and C are distal and B and D are distal.
Take disjoint zero-sets Z1 and Z2 containing A and £ respectively.

By (4) of 2.1 there are zero-sets C and D such that Zγ a X\C, Z2 c X\Z>
and (X\C) n (-3Γ\Z>) = ψ. This C and D are as required.

3.3. The following lemma will be used in proving the theorem
which follows it and also in §4. We recall that a proximity mapping
is a mapping /, from one proximity space to another, with the pro-
perty that f(A) and f(B) are proximal whenever A and B are. An
equivalent property is that f~ι{C) and f~ι(D) be distal whenever C
and D are.

LEMMA. Let f:X—*R. Then f is a zero-set mapping if and
only if f is a proximity mapping.

Proof. Suppose first that / is a zero-set mapping. Let A, BaX
be such that fA and fB are distal in R. Then clRfA and c\RfB are
disjoint zero-sets of R and hence their inverse images under / are
disjoint zero-sets of X containing A and B respectively. Thus A and
B are distal.

Conversely suppose / is a proximity mapping. Let a < β be real
numbers. For each integer n, [a + n~ι, β — n~ι] and R\(a9 β) are
distal in R and hence their inverse images under / are distal in X.
Thus for each n there are disjoint zero-sets Zn and Zf

n of X with



140 HUGH GORDON

f-ι[a + n~\ β - n-1] c Z%

and

f-\R\(a, β)) c Z'% .

We have

f~ι[a + n~\ β - n-1] c Zn c X\Z; c f-\a, β) .

It follows:

U (X\Z'n) = f~\a, β) .

Then f~ι(a, β) is a countable union of cozero-sets and hence is a
cozero-set.

3.4. Whenever (X, ^ ) is a zero-set space, S(X, %) will denote
the set of all zero-set mappings of X into R, in other words, the
set of zero-set functions on X. S(X, 3Γ) will be abbreviated by S(X)
or S where convenient. S*(X, %T), S*(X) and S* will denote the
bounded functions in S.

3.5. The following theorem completes the justification of our
use of the terms "zero-set space" and "zero-set" with reference to
the abstract structure (X, JΓ).

THEOREM. Let (X, 3?) be a zero-set space. Then S(X, JΓ) is a
uniformly closed ring of functions; it is also a lattice. The totality
of zero-sets of functions in S(X, %) is precisely ^Γ; i.e.,

Corresponding statements hold for S*.

Proof. That S is a uniformly closed ring is a special case of
Lemma 2.4; that S* is such a ring is an immediate consequence.
We show S and S* are lattices by the usual argument based on the
fact that feS implies \f\eS, which follows from the definition of
zero-set function in 3.1. For each fe S, Zf is the inverse image of
the zero-set {0} of R and hence is in %*. Finally we choose Z G ^
and find fe S* with Zf = Z as follows. By (5) of 2.1, there are
Zu Z2, G 3? whose union is X\Z. Recall that whenever two sets
are distal in a proximity space, there is a proximity mapping into
[0,1] which is 0 on one of them and 1 on the other [1, Th. 25C5].
Applying this theorem to Z and Zn1 we find for each n a bounded
proximity function fn with fn(Z) c {0} and fn(Zn) c {1}. By the pre-
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ceding lemma, fn e S* for all n. We have Z c Zf% c X\Zn and
Z == n (X\Zn). Hence Z = f)Zfn1 which is the zero-set of some fe S*,
since {Zg\geS*} is closed under countable intersection (Theorem 2.3).

3.6. If fe S(X) and f(x) Φ 0 for all x e X, then 1/fe S(X). This
statement is verified by checking that the inverse image under 1//
of each open set is the inverse image under / of some open set.

3.7. How to describe £* in terms of S is clear; the following
theorem describes S in terms of S*.

THEOREM. Let X be a zero-set space and f:X —>R. Then the
following conditions are equivalent:

(a) feS.
(b) (f Λa) V ( - α ) e S * for all a > 0.

( c ) There are cozzro-sets U19 U2, and f, f2, e S* such that:

f\U — f \U

for all n, where \ denotes restriction, and

Proof. (a)=>(b) is trivial since S is a lattice. (b)=>(c) is proved
by letting Un = f~ι(—n, n) and fn = (fΛn)V (-n). (c)=>(a) is clear
noting that for every open interval (/3, 7) we have:

f~ι(β,Ύ) = U[UnΠfήι(β,Ύ)],

which clearly is a cozero-set.

3.8. Before proceeding to the next topic, we digress for a moment
to discuss the relationship between zero-set structures and proximity
structures. As we have seen, each zero-set structure gives rise to
a proximity structure. If we take the totality of zero-sets of the
proximity functions for this latter structure, we recover the former
one. However, not every proximity structure arises from a zero-set
structure. For example, the topological space R of real numbers
admits only one zero-set structure. In more general terms, a prox-
imity structure arising from a zero-set structure has the property
that its proximity functions form a ring, but an arbitrary proximity
structure need not have this property. In fact, we have here es-
sentially the same situation which was discussed in the introduction.
It can be shown easily that the proximity structures on a set X are
in a natural one-to-one correspondence with those uniformly closed
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rings of bounded functions on X which contain the constants and
separate points. The zero-sets of the functions in any such ring give
us a zero-set structure, but the same zero-set structure can arise
from more than one ring. If, starting with a zero-set sturcture, we
take the largest ring having the given zero-sets, the proximity
structure corresponding to this largest ring is the one defined above.

4* Zero-set and uniform structures*

4.1. Let X be a zero-set space. For each fe S(X), we define as
usual a pseudometric on X by

Pf(χ,v) = 1/0*0 -Λv)\.

The uniform structure defined by {pf\feS} will be denoted by U(X)
or simply U, while that defined by {p/|/e£*} will be denoted by
U*(X) or U\

THEOREM 4.2. The proximity structure on X defined in 3.2. is
the one induced on X by 27* and also the one induced by U.

Proof. Recall that that A and B are distal for the proximity
structure determined by a uniform structure means that for some
symmetric entourage V no element of A is a neighbor of order V of
any element of B, in symbols V(A) Π B — φ.

Suppose A and B are distal for the structure defined in 3.2. As
before, [1, Th. 25C5] implies there is a bounded proximity function
/ such that f(A) c {0} and f(B) c {1}. We know fe S* (Lemma 3.3).
Thus

V = {(x9 y) I p f ( x , y ) < l ] ,

which is an entourage for both U and J7*, serves to show A and B
are distal for both the proximity structure determined by U and that
determined by U*.

Conversely suppose A and B are distal for either the proximity
structure determined by U or that determined by 27*. Then for
some entourage V of U or U*9 xe A and ye B imply (x, y) g F. In
either case, there are fί9 , fn e S and εί9 , en > 0 such that:

V 3 {(x9 y) I \Mx) - My) \ ̂  e, for all i) .

Let Qi — (l/6i)fi for each i. Then whenever xe A and y e B,

for some L Consider g: X—* Rn defined by
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Note d(gA, gB) ^ 1, where d is of course the distance function on
Rn. Define φ: Rn -> R by

φ(t) = mm {d{t,gB),ϊ\

and note φ is continuous. We show φog is a zero-set function on X.
If 27 is open in R, φ~ι U is open in Rn, and hence is a countable union
of sets of the form VL x x Vn with each F< open. For each such
set,

g-W x • x Vn) = flrr1 Vi Π Π g?Vn

is a zero-set of X, hence <p°# is indeed a zero-set function. But
{<P°9){x) = 0 iί xeB while {φ°g)(x) = 1 if ae A. Thus A and B are
contained in the disjoint zero-sets (^>o^)~1(0) and (φog)~ι(l) respectively.
Thus A and B are distal for the uniform structure defined in 3.2.

4.3. In connection with the following theorem, we note that it
will be apparent later that every function on X uniformly continuous
for U* is bounded. We emphasize that we are using the standard
structures of R in the theorem.

THEOREM. Let f be a real-valued function on X. The following
statements are equivalent:

(a) f is a zero-set mapping.
(b) f is a proximity mapping.
(c ) f is uniformly continuous for U.

For bounded f, each of the preceding conditions is equivalent to:
(c*) / is uniformly continuous for Ϊ7*.

Proof. Both (c)=>(b) and (c*)=>(b) since a uniformly continuous
mapping is always a proximity mapping for the proximity structures
determined by the uniform structures on the two spaces involved.
(b)=>(a) is part of Lemma 3.3. (a)=*(c) is obvious from the definition
of U. Similarly, if / is bounded and satisfies (a), it satisfies (c*) by
the definition of U*.

4.4. At the risk of undue repetition, we point out that the
preceding theorem is not a special case of the following one. While
it is true that we may take Y = R as a zero-set space, neither U(R)
nor Z7*(i?) is the standard uniform structure of R.

THEOREM. Let X and Y be zero-set spaces and φ: X—+Y. Then
the following statements are equivalent:
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(a) φ is a zero-set mapping.
(b) φ is a proximity mapping.
(c) φ is uniformly continuous for U(X) and U(Y).
(c*) φ is uniformly continuous for U*(X) and U*(Y).

Proof. (c)=>(b) and (c*)=*(b) are a general property of uniform
spaces as in the preceding theorem. (a)=*(c*) is proved as follows:
U*(Y) is defined by pseudometrics of the form pg with geS*(Y).
Since φ is a zero-set mapping, goφe S*(X). Thus

(x19 χ2) -> Pgiφfa), φ(χ2)) = P9«P(%II χ2)

is one of the pseudometrics which defines U*(X). (a)=>(c) is proved
similarly. Finally we prove (b)=>(a): Let Z b e a zero-set of Y. Then
Z = Zg for some geS(Y). The preceding theorem implies first that
g is a proximity mapping and then, since it follows goφ is also one,
that goφeS(X). Thus φ~ιZ = Z(goφ) is a zero-set of X.

5* Compactification of zero-set spaces*

5.1. Some definitions are necessary before we can begin con-
structing compactifications. Let X be a zero-set space and A a X.
Consider the collection %TA of all sets of the form Z f] A where Z is
a zero-set of X. Clearly this collection is ctosed under countable
intersection and finite union. Let ^^ be the set of restrictions to
A of zero-set functions on X. Then every set in %*A is the zero-set
of a function in ^ . On the other hand, the inverse image of each
closed set of R under a function in ^ is in %*A. Thus by Lemma
2.5, %A is a zero-set structure on A. We call this structure the
relative zero-set structure induced on A by X and refer to A with
this structure as a zero-set subspace of X.

5.2. We call a zero-set space (X, JΓ) compact if the associated
topological space is compact. Note that this definition is equivalent
to defining X to be compact if every covering of X by cozero-sets has
a finite sub-covering. Given a compact zero-set space X, S(X) is a
uniformly closed ring of continuous functions which separates points
and contains the constants. Thus S is exactly the set of all con-
tinuous functions on X by the Stone-Weierstrass Theorem. In short,
S is determined by the topology. Since ^Γ consists of all zero-sets
of functions in S, we conclude that a compact topological space admits
a unique zero-set structure.

5.3. By a compactification of a zero-set space X we mean, of
course, a compact space Y—whether we describe Y as a zero-set
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space or a topological space is immaterial in view of the preceding
paragraph—which has X as a dense zero-set subspace. After a few
more definitions, we will explain how it is known that every zero-set
space has a compactification.

5.4. Let (X, %*) be a zero-set space. We call s*f a z-filter on
X if Stf is a nonempty subset of %* such that:

(1) 0ej*Λ
(2 ) If A e J*Λ B e %: and B z> A, then B e sZ.
(3) If A and J3e J ^ , then A n BeJ^.

A s-filter which is not contained in any other z-ϋlteτ is called a
2-ultrafilter. A £-ultrafilter is called real if it is closed under count-
able intersection. A z-ultrafilter is called hyperreal if it contains a
countable collection of sets whose intersection is empty. Certainly,
no 2-ultrafilter can be both real and hyperreal; we check that each
one is either real or hyperreal. Let j ^ be a 2-ultrafilter which is
not hyperreal. Let J%ff be the totality of countable intersections of
sets chosen from Szf. Then it is easy to verify that s%ff is a ^-filter
and j y ' Z) s>f. Hence S%7 = Szf' and J ^ is real.

5.5. Let us return for a moment to a situation described earlier.
Let X be a set and & be a ring of bounded functions on X. We
suppose & is uniformly closed, contains the constants and separates
points. There are several well-known ways to construct a compact
Hausdorff topological space X having the following properties:

(1) The set X is dense in X.
(2) Each function in & has a continuous extension to X.
(3) The restriction to X of each continuous function on X is

in &.
These properties serve to uniquely determine X. Among the

methods of constructing X, the ones most relevant to the discussion
below are those of Lorch [5, §3] and of the author [3, §2].

5.6. Continuing with X and ^?, we make X into a zero-set
space by defining the zero-sets to be the zero-sets of the functions
in & (Theorem 2.3). (The special case where S*(X) = & will be
discussed in the next section.) The same zero-set structure on X is
obtained by putting on X the unique zero-set structure admitted by
its topology and regarding X as a subspace of X. Thus X is a
compactification of X as a zero-set space. Furthermore every com-
pactification Y of a zero-set space X may be obtained in this way
by letting *% be the set of all restrictions to X of continuous func-
tions on Y.
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5.7. Starting with X and & again, we define X and recall [3,
Th. 3.2]:

THEOREM. Each z-ultrafilter on X converges, as a filter base on
X, to some pe X. Each pe X is the limit of some z-ultrafilter.

(We warn the reader that in the general situation under con-
sideration here it is possible for pe X to be the limit of more than
one 2-ultrafilter.)

5.8. Lorch [5, §3] has distinguished two classes of points of X.
These classes reflect the notion of real and hyperreal z-ultrafilter as
introduced in 5.4. Specifically, we have the following theorem, taken
from [3, Ths. 4.7 and 4.8].

THEOREM. Let pe X and Jϊf be a z-ultrafilter converging to p.
If there exists an fe& such that the continuous extension of f to
X vanishes at p but f(x) Φ 0 for all xe X, then Ssf is hyperreal.
If no such f exists, then Szf is real.

6* βX and oX for a zero-set space X.

6.1. A special case of the discussion of the preceding section
arises when we start with a zero-set space X and set & = S*(X).
In this case we denote X by βX. As the notation suggests, βX is
a natural generalization of the Stone-Cech compactification of a com-
pletely regular space. In particular, as we have seen, βX is a com-
pactification of X as a zero-set space and every zero-set function on
X has a continuous (i.e., by 5.2, zero-set) extension to βX. Additional
properties of the Stone-Cech compactification which apply to our βX
will become apparent as we proceed. We note at once that every
point of βX is the limit of a unique z-ultrafilter on Xby [3, Th. 3.3].

6.2. We denote by υX the zero-set subspace of βX consisting
of those points which are limits of real z-ultrafilters on X. Towards
verifying that X c υX, let J*fx be the z-ultrafilter converging to
some x e X. We show that Szfx consists of those zero-sets of X
which contain x and hence is real. Since these zero-sets form a
2-filter, it suffices to show Ssfx contains no other sets. But this is
evident since f(S&*) converges to f(x) for every fe S*(X) and hence
ZfeStf* implies f(x) = 0, i.e., xeZf. Thus it is clear that X is a
dense zero-set subspace of υX. That υX is a natural generalization
of the Hewitt real compactification of a completely regular space will
be developed in detail below.
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THEOREM 6.3. Every fe S(X) has an extension in S(υX). How-
ever if pe βX\υX, there is an fe S(X) which has no extension to
X U {p} which is even continuous.

Proof. Let fe S(X). Let gx = l/(/+ + 1), g2 = l/(/- + 1). Then
gx, g2e S*(X) by 3.5 and 3.6. Thus g19 g2 have zero-set extensions to
βX; let hv h2 be the restrictions to υX of these extensions. By-
Theorem 5.8, since gλ and g2 are never zero on X, they are never
zero on υX. Thus l/ht — l/h2 is defined; clearly it is the required
extension of /.

Now suppose peβX\υX. Then there is a geS*(X) such that
the continuous extension of g to βX vanishes at p but g(x) Φ 0 for
all xeX. Let / = 1/g and note fe S(X). But, the z-ultrafilter J^p

which converges to p is such that g(J^p) converges to 0 and hence
f(J%fp) cannot converge. Thus / has no continuous extension to

x u M.

6.4. We now show that βX and υX are the completions of X
for U*(X) and U{X) respectively. Of course, the compact space βX is
the completion of X for some uniform structure; we omit the routine
checking of definitions which verifies that this structure is indeed
U*(X).

THEOREM. (υX, U(υX)) is the completion of (X, U(X)).

Proof. Again it is necessary to check definitions in a manner
too tedious to record here. We need to know that U(υX) and U*(βX)
induce on X the relative uniform structures U(X) and U*(X) re-
spectively. We also use the identity of the relative topology induced
on υX by βX with the topology defined by U(υX). We conclude
then that X is dense in υX. Thus we need only show that every
Cauchy filter for U(X) has a limit in υX. Let ^ be such a Cauchy
filter. Then, since U*(X) is coarser than U(X), ^ has a limit p in
the compact space βX. Suppose p £ υX. Then there is a continuous
function / on βX such that f(p) = 0 but f(x) Φ 0 for all xeX. Let
g be the reciprocal of the restriction of / to X and note geS(X).
Since g is uniformly continuous on (X, U(X)) by the definition of
U(X), g{^) is a Cauchy filter base on R. But since / (^O converges
to f(p) = 0, g{J^~) can not converge. This contradiction establishes
p e υX and completes the proof.

COROLLARY 6.5. Let X and Y be zero-set spaces and φ:X—>Y
be a zero-set mapping. Then φ has extensions φυ and φβ which are
zero-set mappings with φυ\ υX-+ υY and φβ: βX—> βY.
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Proof. By Theorem 4.4, φ is uniformly continuous for U(X)
and U(Y); hence it has a uniformly continuous extension φυ mapping
the completion of (X, U{X)) into that of (Y, U{Y)). But by the
preceding theorem and 4.4 again, φ" is as required. The part about
φβ is similar.

7* Pseudocompact and realcompact spaces*

7.1. Pseudocompactness and realcompact ness are defined in the
obvious way. Explicitly, a zero-set space X is called realcompact if
every real 2-ultrafilter on X converges to a point of X, i.e., if υX= X.
X is called pseudocompact if it has no hyperreal 2-ultrafilter, i.e., if
υX = βX.

7.2. In other theories, many conditions are known to be equiva-
lent to pseudocompactness. For reasons which will become apparent
as we proceed, these conditions carry over essentially unchanged to
the present context. We merely refer the reader to Gillman and
Jerison [2] and Lorch [5]. We do record here two corollaries for
future use. Both are due to Lorch [5; Ths. 11 and 9], who states
them in quite different language; both are special cases of Theorem
5.8 above.

COROLLARY 7.3. Let X be a zero-set space and Y be any com-
pactification of X. Then X is pseudocompact if and only if every
nonempty zero-set of Y meets X. In other words, if and only if
each continuous function on Y which vanishes nowhere on X vanishes
nowhere on Y.

COROLLARY 7.4. Let X be a zero-set space and Y be any com-
pactίfication of X. Then X is realcompact if and only if each
p e Y\X is contained in a zero-set of Y which does not meet X. In
other words, if and only if for each pe Y there is a continuous f
on Y with f(p) = 0 but f(x) Φ 0 for all x e X.

7.5. We place here, for the record, a few significant facts, which
are trivial consequences of what we have already proved. That
β{βX) = βX and υ(βX) = βX requires no explanation. β(uX) = βX—
equal in the sense of isomorphic—since both are compactifications of
X having essentially the same ring of continuous functions. Next
we apply Corollary 7.4 to β(υX) = βX as a compactification of υX.
Noting that f(x) φ 0 for all xeX implies f(q) Φ 0 for all qe υX, we
see that υX is realcompact. In other words υ(υX) = υX.
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It is well-known that a topological space X is compact if and
only if every multiplication linear functional on C*(X) is of the form
f—+f(x) for some xeX; here, as throughout the paper, we exclude
the zero functional from the multiplicative linear functionals. As a
result, the same statement holds for a zero-set space X and S*(X).
We prove the corresponding statement for realcompactness and S(X)
next. Clearly if X is not realcompact, we need merely choose
peυX\X and consider f-+fJ(p), where fυ denotes the continuous
extension of / to υX, to find a multiplicative linear functional on
S(X) which does not arise from a point of X. Suppose conversely
X is realcompact. Let P: S(X) —• R be a multiplicative linear func-
tional. The restriction of P to S*(X) is such a functional on S*(X)9

and hence there is a peβX with Pf = f(p) for all feS*(X), where
fβ denotes the continuous extension of / to βXm If p were in βX\υX =
βX\X, there would be an feS*(X) such that Pf = fβ(p) = 0 which
vanished nowhere on X, and thus, by 3.6, with 1/fe S(X). It follows
p e X. In short, X is realcompact if and only if every multiplicative
linear functional on S(X) is of the form /-->/(#) for some xeX.

THEOREM 7.6. A zero-set space X is pseudocompact if and only
if each zero-set function on X is bounded.

Proof. Since, as noted above (3.6), the reciprocal of a zero-set
function is also one, the existence of an unbounded zero-set function
is equivalent to the existence of a bounded zero-set function / with
f(x) > 0 for all xeX but inί{f(x) \ x e X} = 0. Such functions / may
be described as zero-set functions whose continuous extensions to βX
vanish somewhere on βX but nowhere on X. By Corollary 7.3, the
result is now clear.

7.7. The following theorem is to be contrasted with the topolo-
gical space case, where the union of two realcompact subspaces may
fail to be realcompact [2, Exercise 8H6].

THEOREM. Let A19 A2J c X all be realcompact. Then A = U An

is realcompact.

Proof. Consider the compactification B = c\βxA of A, and let
peB\A. For each n with p&clβxAn, we can use complete regularity
to find a continuous fn: βX—* R such that fn(p) — 0 but fn(x) Φ 0 for
all x e An. But for each n with p e c\βxAn, we can use Corollary 7.4
to find a continuous gn: c\βxAn —> R with gn(p) = 0 but gn(x) Φ 0 for
each xeAn; then extending gn from the compact space clβxAn to all
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of βX, we again find a continuous fn: βX—> R such that fn(p) = 0
but fn(x) Φ 0 for all xeAn. Let:

/ = Σ 2 - ( | Λ | Λ 1 ) .

Then f(x) Φ 0 for all xeA, but f(p) = 0. Restricting / to c\βxA and
using Corollary 7.4, we have the desired result.

7.8. The following theorem also holds for topological spaces [2,
Th. 8.9]:

THEOREM. Let (Ae)eeτ be a family of realcompact subspaces of X.
Then f]Ac is realcompact.

Proof. Consider the compactification B = c\βA Π Ac of Γ\At, and
let peB\Γ\Ae. Then for some c, p g At. But peclβλ-Ac and hence
there is a continuous /: clβxAe —» iί with f(p) = 0 but /(#) =£ 0 for all
.τ e Ac. Restricting / to B, we conclude Π Ac is realcompact.

THEOREM 7.9. Let Y be a realcompact zero-set space and X a Y.
Then there is an X' a Y which is υX in the sense that it is
isomorphic as a zero-set space to υX under an isomorphism leaving
X pointwise fixed.

Proof. Let i:X—>Y be the inclusion mapping. By Corollary
6.5, i has a zero-set extension iυ:υX—>Y. we show that iυ is in-
jective. Let px and p2 be distinct points of υX. Then p1 and p2 are
the respective limits of distinct real z-ultrafilters S^fι and J ^ 2 on X.
Since isfά = j ^ , j ^ converges to i ^ e Γ(i = 1, 2). But by [3, Th.
4.7], the distinct real 2-ultrafilters j ^ and j^ζ have distinct limits
in the compactification cl̂ ^X of X. In short, i°p1 Φ iυp2 and iυ is
indeed injective.

It remains only to set Xr = iυ(υX) and to show that iυZ is a
zero-set of X' for an arbitrary zero-set Z of υX. Since Z Π X is a
zero-set of X, a subspace of X', Z Π X = Z' Π X for some zero-set
Z1 of X'. Choosing /e S(Xf) such that Zf=Z', we note that

iyZ(/o^) = Zf=2?

is a zero-set of X'; thus we need only show that Z(foiυ) — Z. To
this end, it suffices to show that whenever Z± and Z2 are zero-sets
of υX having the same intersection with X, then ZL = Z2. Suppose
on the contrary we have such Zx and Z2 and pe Zι but p g Z2. Then
there is a ge S*(υX) with g{p) — 1, Zg = Z2 and ̂  <£ 1. Also there
is an /̂  G S*(6>X) with /̂  ̂  0 and Zh = Zλ. Then 1 — # + h can vanish
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only at those q where h(q) = 0 and g(q) = 1, and hence qeZL while
q £ Z2. Thus 1 — g + h never vanishes on X. But it does vanish at
p, which is impossible by Theorem 5.8 applied to the compactiίication
β(uX) = βX of X. This contradiction completes the proof.

COROLLARY 7.10. A closed subspace of a realcompact zero-set
space is realcompact.

COROLLARY 7.11. Let X be a subspace of a zero-set space Y.
Suppose each real z-ultrafilter of X has a limit in Y and each point
of Y is the limit of such a z-ultrafilter. Then Y is (isomorphic
to) υX.

Proof. We have X a Y a υY, and thus, identifying the X' of
the theorem with υX, X c υX a υY. By definition of υX, the points
of υX are exactly the limits of the real z-ultrafilters of X. But by
hypothesis then, υX = Y.

COROLLARY 7.12. Let X be a subspace of a realcompact zero-set
space Y. If each point of Y is the limit of a real z-ultrafilter of
X, then Y is (isomorphic to) υX.

Proof. We repeat the preceding proof noting that Y = υ Y.

THEOREM 7.13. Let X be a subspace of a realcompact zero-set
space Y. In order that Y be (isomorphic to) υX it is necessary and
sufficient that each nonempty zero-set of Y meet X.

Proof. Necessity. We must show that each nonempty zero-set
Z of υX meets X. Choosing feS*(υX) with Zf=Z and applying
Theorem 5.8 to the compactification β(oX) = βX, we have the desired
conclusion.

Sufficiency. We have I c Γ c / 3 7 a s zero-set spaces. We show
first that X is dense in βY. If not, we may use the complete
regularity of βY to find a continuous, hence zero-set, function / on
βY with X c Zf but f(p) - 1 for some p e βY. Let

Z> = {qeβX\f(q) ^1/2}

and note, since Y is dense in β Y, Z = Z' Π Y is nonempty. But then
the nonempty zero-set Z of Y does not meet X, contrary to hy-
pothesis. Thus X is indeed dense in βY.

It follows by Theorem 5.7 that each point of Y, in fact each
point of βY, is the limit of some z-ultrafilter of X. Suppose some
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p e Y is the limit of a hyperreal 2-ultrafilter of X. Then by Theorem 5.8
there is a zero-set Z of βY which contains p but does not meet X.
But then Z ΓΊ Y is a nonempty zero-set of F which does not meet X,
contrary to hypothesis. Thus every p e Y is the limit of a real ^-ultra-
filter of X. The theorem now follows from the preceding corollary.

7.14. The " i f part of the following theorem holds also for
topological spaces, but the "only i f part fails.

THEOREM. A zero-set space X is pseudocompact if and only if it
has only one compactification. (In other words, if and only if any
two compactifications are homeomorphic under a homeomorphism
leaving X pointwise fixed.)

Proof. If: Suppose X is not pseudocompact. By essentially the
same argument used in [2, Exercise 9D2], βX contains at least 2G

(where C = 2Ko) points which are each the limit of a hyperreal z-
ultrafilter. Let pι and p2 be two such points. Let & consist of
those functions feS*(X) whose continuous extension f3 to βY have
the property that f\pύ — fβ(p2) Now construct X for X and & as
described in 5.5. Since the restriction to X of each continuous h on
βX with h(pL) Φ h(p2) admits no continuous extension to X, X and
βX are certainly distinct (in the sense specified in the statement of
the theorem). It only remains to show that 1 is a compactification
of X as a zero-set space; i.e., since X is compact and X is dense in
X, that X with its initial zero-set structure is a zero-set subspace
of X. In other words, that

Since & c S*(X), we complete the proof by showing that for each
geS*(X) there is an fe& with Zf = Zg. But since pι and p2 are
limits of hyperreal £-ultrafilters, there are g± and g2eS*(X) whose
continuous extensions to βX vanish at p1 and p2 respectively, but
which never vanish on X. Then clearly gxg2g e &, while Z(g1g2g) = Zg;
which completes the proof of "if".

Only if: Suppose X is pseudocompact and let Y be any com-
pactification of X. By Theorem 7.9, there is an Xr isomorphic to
υX with X c X' a Y. Since υX = βX, X' is compact and hence closed
in Y. Hence Xr = Y; in other words, υX is the only compactification
of X.

7.15. In order to prove theorems about products, we must first
define the product of a family (Xe)eeI of zero-set spaces. The zero-sets
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of X = ΠXC will be the obvious ones, namely all sets which are count-
able intersections of finite unions of sets of the form prr 1 ^ where Zc

is a zero-set of some Xc and pr, is the projection of X on Xc. But
we must verify that these sets indeed form a zero-set structure on
X. To this end, let Γ̂o be the collection of all sets of the form
prr 1 ^ as above; let %* be the collection of all countable intersections
of finite unions of such sets. By Lemma 2.5, it suffices to show
that for each ZQ e %Ό, there is a function / on X such that Zf = Zo

and f~Ψe%r for each F closed in R. But if ZQ e ;T0, Zo = w7ιZ
where Z = Zg for some zero-set function g on Xe. It suffices then
to let / = g o pr, to complete the proof that %* is a zero-set structure
on X. It is obvious that the topology induced on X by the zero-set
structure %* is the product of the topologies induced on the Xc by
their zero-set structures.

7.16. The following theorem holds also for topological spaces
[2, Th. 8.11].

THEOREM. Let (Xc)eei be a family of realcompact zero-set spaces.
Then X — ΠXC is realcompact.

Proof. We use Corollary 7.4 applied to 7 = ΠβXc as a com-
pact ificat ion of X. Let p e Y\X. Then for some c, pt — pr, p £ Xt.
By the corollary applied to Xe and βXe, there is a continuous / on
βXc which vanishes nowhere on Xt such that f(p) = 0. Since /°pr,
vanishes nowhere on X but does vanish at p, the theorem is proved.

7.17. The following theorem and corollary are to be contrasted
with [2, Exercise 91 and 9.15], where counterexamples to the cor-
responding statements for topological spaces are to be found; these
counterexamples involve products of just two factors.

THEOREM. Let (Xe)eei be a family of zero-set spaces, let X = ΠXt

and let Y = ΠυXc. Then Y = υX.

Proof By the preceding theorem, Y is realcompact. By Theorem
7.13 then, we need only show that every nonempty zero-set of Y
meets X. Let Z be such a zero-set; Z is a countable intersection of
finite unions of sets of the form wTιZt with Zt a zero-set of υXc.
Fixing pe Z, we replace each of these finite unions by one of the
sets whose union is taken, choosing this one to contain p. In this
way, we find Z' aZ such that Z' is nonempty and is a countable
intersection of sets of the form prr 1^. Thus we may write:
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z> = ή vrτ:zίn
71 = 1

where ZCn is a zero-set of υXCn and, without loss of generality, suppose
that ε19 c2, are distinct. Since each nonempty zero-set of υXe meets
Xe (Theorem 7.3), we may choose, for each n, an xn e Ztn Π Xtn.
Choosing any x e X such that pr,nα? = xn for all n, we have
xeZ'nXczZnX. Hence Z{λXφ 0 , which completes the proof.

COROLLARY 7.18. If (Xc)cei is a family of pseudocompact zero-
set spaces, X — ΠXC is pseudocompact.

Proof. We have υX = ΠυXc = ΠβXt is compact; hence υX = βX.

8 Baire sets and Baire functions*

8.1. In this section, as an application of the preceding material,
we discuss Baire sets and Baire functions. Given a zero-set space
(X, ̂ Γ), one may naturally inquire about the collection 3 3 ^ of all
countable unions of zero-sets. Also the smallest collection 58^Γ of
subsets of X which contains %? and is closed under complementation,
countable union and countable intersection suggests itself for study.
The easiest way to see that $8^ and 23^ are zero-set structures is
to refer to Hahn [4], as explained in a moment. In the case of
the second easiest way is to check the axioms.

8.2. Starting again with (X, %*), we can proceed in an apparently
different direction by defining SB^X, ̂ Γ) to be the ring of functions
which are pointwise limits of functions in S(X, %')m Likewise we
define S3S(-3Γ, ̂ ) to be the smallest ring of functions which contains
S{X, %") and is closed under pointwise convergence. According to
[4, 31.4.3] a function belongs to SS^X, ̂ Γ) if and only if the inverse
image of every closed set of R belongs to 3 3 ^ ; in short, 3 3 ^ is
a zero-set structure and S(X, 33^) - 33XiS(X, %T). (That SS^X, %)
is uniformly closed is [4, 31.4.1].) Similarly according to [4, 34.3.41],
a function belongs to 33S(X, 5Γ) if and only if the inverse image of
every closed set of R belongs to 33^Γ; in short, 33̂ Γ is a zero-set
structure and S(X, 93^0 = S3S(X, 8Γ). We call the sets in 33^ the
Baire sets of (X, %T) and the functions in 33S(X, β£T) the Baire func-
tions of (X, %T); those sets and functions in 3 3 ^ and Ϊ8LS(X, βf) are
specified by the phrase "of the first class."

8.3. We recall for use below that every Baire set is a union
of zero-sets; i.e., each set in 23.SΓ is a union of sets in ^Γ. This



RINGS OF FUNCTIONS DETERMINED BY ZERO-SETS 155

remark is verified by letting Szf be the set of all those A e 93^" such
that both A and X\A are unions of sets in %. Then J / D J and is
closed under countable union, countable intersection and complementa-
tion; hence

8.4. The sufficiency part of the following theorem was proved
for a compact space X by Lorch [5, Th. 15].

THEOREM. In order that (X, 33̂ Γ) be realcompact it is necessary
and sufficient that (X, 5Γ) be realcompact.

Proof. Sufficiency. Let P be a multiplicative linear functional
on 33S(X, T) - S(X, S&3f). The restriction Q of P to S(X, X) is a
multiplicative linear functional, and hence, since X is realcompact,
there i s a p l with Qf = f(q) for all / e S(X, 3Γ). To show Pf =
f(q) for all f e S(X, 95%*), we assume the contrary. Then the linear
functionals P and / —> /(#) are distinct, and hence there is an
/ 0 e S(X, 33 T) for which P/ o = 0 but fQ(q) Φ 0. Consider the set
A = {.τeX|/o(a0 - /0(g)}e33^. This set contains a set ^ e T with
qeZ. Choose a 0 e S(X, %:) with Zg = Z and set h = fl + g2. Note
that & vanishes nowhere on X, hence h is a unit of S(X, 33^), but

Pλ = (P/0)
2 + (Q^)2 - 0 + [g(q)Y = 0 .

This contradiction establishes Pf = fig) for all f e S(X> 33^Γ), and
thus completes the proof that (X, 23̂ Γ) is realcompact.

Necessity. Suppose (X, 3f) is not realcompact; we show that
(X, 23^) is not realcompact. We know there is a p e υ{X, ^Γ)\X. p
is the limit of a real z-ultrafilter Szfp with respect to ^Γ. For each
f e SiX, -SΓ), fiSsfp) converges to /y(p), where / y is the continuous
extension of / to uiX, %). Since p & X, for each α e X there is an
feSiX, %) such that / (J^ p ) does not converge to /(x). We show
next that fiJ^p) is a convergent filter base on R for each / 6
3T) = S(X, SB^). Let ^ be the set of / e 35S(X, ̂ ) for which
is convergent; since S(X, ^ ) c ^€^, it is enough to show that ^/S
is closed under pointwise convergence. Let fn-+f pointwise with
/„ e ̂ // for all n. Let δ > 0 be given. If we show fis*fv) contains
a set of diameter ^ 5, we shall know fi^/v) converges and hence
/e^/f. For each w, choose Ane^fp such that diam /n(Aw) < <?/2.
Let

since s$fp is real, 4̂ e J^^. Let a? and 7/ e ̂ 4. Choosing ^ such that
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\fn(x) -f(x)\<δ/4 and | fn(y)- f(y) \ < δ/4 and noting x and
yeAc:An, we have \f(x) — f(y)\ < δ. Thus diam A ^ δ; which
completes the proof that / ( J / p ) converges for all f e S(X, 33;T).
/ —> lim f(J^p) is a multiplicative linear functional on S(X, 335̂ ) and,
as we have already noted, there is no x e X with lim f(S$fp) = f(x) for
all / e S(X, &) c S(X, 33JT). Thus (X, 35JT) is not realcompact.

COROLLARY 8.5. In order that (X, 33^) be realcompact it is
necessary and sufficient that (X, %') be realcompact.

Proof. Apply the theorem twice noting 33(33^) = 33^.

THEOREM 8.6. (X, 33^) is never pseudocompact, unless X con-
tains only finitely many points.

Proof. We first show that for each infinite subset B of X, we
can find a Ze^f such that BΓ)Z is infinite and Bf](X\Z) is non-
empty. Given such a B, we begin by choosing x and y e B and

r ) with f(x) = l and f(y)= - 1 . Then xeBΓ)Zf~ and
\Zf+. Since Zf+l)Zf~ = X, one of the sets Zf+ and Z/~ has

an infinite intersection with B; let Z be this one, which is as required.
Now we construct a sequence ZQ, Zί9 Z2, of sets in ĵ Γ be setting

^o = Xand then defining the other sets in turn. For each n ^ 1, we
use the preceding paragraph to choose Zn such that

is infinite and

zon ••• n£*-!i

is nonempty. Setting

An = zon ••• nz

for all n ^ 1 and

A0 = ZoΓiZ.n

we note that the sets An are pairwise disjoint and exhaust X.
Whenever Ze^, it follows from the definition of 3 3 ^ that both
Ze 3 3 ^ and X\Ze 3 3 ^ . Thus since Ao and each Zte^9 X\Ane 3 3 ^
for all n ^ 0. Thus defining / : X—> JB to be %on AΛ, we have found
an unbounded / e S(X, 33^) . The result now follows by Theorem 7.6.

COROLLARY 8.7. (X, 33^Γ) is never pseudocompact, unless X is
finite.
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Proof. S3;r = ^(S&ίT).
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