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A space X is of countable type if for every compact CcZ,
there exists a compact set K having a countable basis with
C(zK. X is of point-countable type if there exists a covering
of compact subsets of X, each having a countable basis. It is
shown that in a Hausdorff space of countable type, a compact
set has a countable basis if and only if it is a Gs-set. Similarly,
for Hausdorff spaces of point-countable type, a point has a
countable basis if and only if it is a Ga-set.

l Terminology • Notation and terminology will follow that of

Dugundji [2]. By a neighborhood of a set A, we will mean an open
set containing A.

If X is a space and A c X, a collection 2& of neighborhoods of A
is called a basis at A if and only if for every neighborhood 0 of A,
there exists De 2$ with i c f l c O .

If X is a space and i d , then A is said to be of countable
character if and only if there exists a countable basis at A.

A space X is said to be of countable type if for every compact
C c l , there exists a compact set Kof countable character with CaK.

A space X is said to be of point-countable type if there exists a
covering of compact subsets of X, each having countable character.

2* Discussion and theorems* Every first countable space, as
well as every locally compact Hausdorff space, is of point-countable
type, while spaces of point-countable type are, in turn, ^-spaces.
Compact spaces are trivially of countable type, but these two concepts
are fairly far removed from each other since a metric space is of
countable type.

The following lemmas will be needed. Lemma 2, which was first
noted by ArhangeΓskiϊ [1], can be verified by a slight modification of
Wicke's proof of Lemma 1. The author is indebted to Howard Cook
for some valuable suggestions.

LEMMA 1. (Wicke). In a Hausdorff space X, the following pro-
perties are equivalent:

( i ) X is of point-countable type.
(ii) If 0 is an open set in X and xeO, there exists a compact

set B of countable character such that x e B and 5 c O .

LEMMA 2. (ArhangeUskiί). Suppose X is a Hausdorff space oj

181



182 MICHAEL HENRY

countable type, U is an arbitrary compact subset, and 0 is any of its
neighborhoods. Then there exists a compact set C of countable char-
acter such that ί / c C c O .

LEMMA 3. Let X be a Hausdorff space and let U and V be
compact subsets of countable character. Then U Π V is also a com-
pact set of countable character.

Proof. That U Π V is compact is obvious. Denote the members
of the countable bases at U and V by Un and Vn, respectively, and
assume that the collections {Un} and {Vn} are descending. It will be
shown that the collection {Un Π Vn} forms a local basis at U Π V. Thus,
let 0 be any neighborhood of U Π V. Then U — 0 and V — 0 are dis-
joint compact sets, and hence there exist disjoint open sets 27* and F*
with U - 0 c U* and F - O c F . Since U* U 0 is a neighborhood of
U, there exists an integer m with Ua Um c U* U 0. Similarly, there
exists an integer n with F c F B c F U 0. Letting k = max {m, n},
it follows that U Γ) 7 c Uk Γ) Vk c 0; for if this is not true then there
must exist a point pe UkΓ\ Vk — 0 which implies that pe U* Π V*,
contradicting the disjointness of Z7* and V*.

For w ^ 1, it follows from Lemma 2 that there exists a compact
set C^ of countable character such that UcCnc. Gn. Let Cn = ΠΓ=ι Cί
By Lemma 3, each Cn is also a compact set of countable character.

THEOREM 1. Let X be a Hausdorff space of countable type and
let U be any compact subset which is also a G5-set. Then U has a
countable basis.

Proof. By hypothesis, there exist neighborhoods Gn of U such that
U = Γin=ι Gn. Construct a sequence {Cn} of compact sets in the follow-
ing manner:

By Lemma 2, there exists a compact set d of countable character
such that UdCι(Z Gγ. For n > 1, it also follows from Lemma 2 that
there exists a compact set C'n of countable character such that Ucz
C'n c Gn. Let Cn = [flΓi1 C<] Π Ci. From a previous remark, each Cn

is also a compact set of countable character.
Let {Um>n} be a countable basis at Cm. Clearly, Ua Um,n for every

pair (m,ri), and furthermore, U cz Γ\m,n Um,n a f\Z=1 Gn = U. Hence,
f|ffl)Λ ί7mι% = C7. It will now be shown that the collection {Um,n} is a
basis at ί7. Indeed, if it is not, then there exists a neighborhood K
of U such that Um>n — K Φ φ for every pair (m, %). This forces
Cm — iΓ Φ φ for each integer m because, if not, then CmdK for some
m, and hence there exists an integer n with C m c Um>naK which is
contrary to our assumption. Since Cm — K is a decreasing sequence of
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nonempty compact sets, f|S=i \Cm — K\φ <ρ. But if p e f\Z=i [Cm — K],
then p e f\m>n Um>% which implies that pe U. This is impossible since
pe X — K and UczK. Thus, {Um,n} is a basis at U, and the theorem
is proved.

COROLLARY. In a Hausdorff space of countable type, a compact
set has a countable basis if and only if it is a G^-set.

THEOREM 2. Let X be a Hausdorff space 0} point-countable type,
and let pe X be any point which is a G^-set. Then p has a countable
basis.

Proof In the proof of Theorem 1, use Lemma 1 instead of Lemma
2 and substitute "point p" in place of U.

COROLLARY. A Hausdorff space is first countable if and only if
it is of point countable type and each point is a GΓset.

COROLLARY. A locally compact Hausdorff space is first countable
if and only if each point is a Gδ-set.
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