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DIFFERENTIAL EQUATIONS IN TWO VARIABLES

ErwIN KREYSZIG

Bergman operators are linear integral operators that
map complex analytic functions into solutions of linear
partial differential equations with analytic coefficients. In
this way methods and results of complex analysis can be
used for characterizing general properties of classes of those
solutions, For example, this approach yields theorems about
the location and type of singularities, the growth, and the
coefficient problem for series developments of solutions.

A partial differential equation being given, there exist
various types of Bergman operators, and for that purpose
it is essential to select an operator whose generating
function is as simple as possible. The present paper con-
siders differential equations in two independent variables, in-
troduces a class of Bergman operators satisfying that re-
quirement, and determines the corresponding class of
differential equations in an explicit fashion. In fact, neces-
sary and sufficient conditions are obtained in order that the
solutions of a partial differential equation can be obtained by
means of a Bergman operator of that class., It is also shown
that the set of these equations includes several equations of
practical importance,

2. Bergman operators of class P,, We consider partial differ-
ential equations of the form

¥ + alx, y)¥, + BE, Y, + 7@, y)¥ =0

assuming that «, B and 7 are real analytic functions in some neigh-
borhood of the origin. Setting 2z, =2 +1X, 2z, =y + 1Y, we may
continue the coefficients to complex values of the variables. We now
introduce the variables

z2=2 + 1z, and 2* =2, — 1%, .

(Note that 2z* =7z if 2 and 2z, are real.) Transforming the given
equation and eliminating one of the two first partial derivatives, we
obtain

2.1) Lu: = o + b(z, 25U + ¢, 2%)u = 0.

A Bergman operator B corresponding to (2.1) may be defined by
means of
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@2) BN @)= s@a (L a-8)a-ora

(t real). 8. Bergman [4] has shown that if g(z, 2%, t) is a solution of
(2.3) 1 —)gps —t g, + 22tLg =0

and g./tz is continuous, then wu(z, z*) = (Bf)(z, 2*) is a solution of
(2.1); here f is any analytic function. ¢ is called the generating
Sumnction of the operator B, and f is called a B-associated function of

that solution wu.
If L is such that (2.3) has a solution of the form

(2.9) 9(z, 2%, 1) = ZJO Qo(2y 27)0"

(9.+/tz continuous), then I, and B (with g given by (2.4)) are said to
be of class P. Note that in this polynomial (2.4) we have omitted
odd powers of ¢ without loss of generality, as can be seen from
2.2).

If in (2.4), the functions 4g,.(z, 2*) can be represented in the
form

(25) QZH(Z’ zx) = )\12#(](2, Z*)H

where p#=0,+--,m and Ny=1, Ny -+, \,, are constants, then L
and B (with g given by (2.4), (2.5)) are said to be of class P,

L is of class P if and only if there is a natural number m such
that

Pom o2y 2%) = 0
where h,(z, 2%) = ¢(z, 2%)q.(z) with arbitrary analytic g¢,(z) and
Powis(2y %) = (Myphay) (25 2%) (t=1,---,m)
with M,, defined by

(M,w)(z, %) = 22 (wz + (b(z, z¥) — #__1>w + ¢ (7, z*)gw dz*) .
2p—1 2

This necessary and sufficient condition for L e P was obtained in
[9]. An equation (2.1) being given, it is clear that this condition
may readily by used to find out whether or not L ¢ P. However, the
condition does not yield an explicit characterization of the class P,
that is, it does not give explicit expressions for the coefficients
b(z, 2*) and c¢(z, z*) of all the differential equations (2.1) with Le P.

Such explicit expressions are desirable, for instance, in connection
with generalizing Bauer’s and Peschl’s theory [1—3] of the equation
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em(m + 1)

2.6 Lo: = u,. +
(2.6) ’ (1 + ezz*)?

u=0 (m=1,2,.--; 6 ==+1)

to other equations. L, is of class P, and (2.6) is of importance
because it is closely related to the Laplace and wave equations.

We shall now see that the class P,, which is a subclass of the
class P, can be characterized by necessary and sufficient conditions
in an explicit fashion. Some applications will be given §4, and it
will be shown that L, e P..

3. Explicit determination of the class P,. For any equation
(2.1) a corresponding Bergman operator B [cf. (2.2)] can be obtained
by determining a power series solution of (2.3), as Bergman [4] has
shown. Clearly, if we choose a particular class of generating func-
tions g(z, 2%, t), such as (2.4), we impose certain restrictions on the
coefficients b(z, 2*) and c(z, 2*) in (2.1), and it is of interest to find cor-
responding conditions for b and ¢. A first class of Bergman operators
for which this problem was solved is the class of exponential opera-
tors, which are suitable for the Helmholtz equation and other equa-
tions and have the property that the theory of linear ordinary dif-
ferential equations can be applied in the study of solutions of partial
differential equations represented by means of those operators; cf. [7]
and [8]. We shall now obtain a complete solution of that problem
for the class P,.

THEOREM 1. In (2.1), Lec P, if and only if (a) or (b) holds:
(@) There is a function p(2, 2*) such that b and ¢ in (2.1) can
be represented in the form

(3.1) b(z, 2%) = Ap — L= ez, 2%) = —Ap,. (A any constant) .
P

2%

(b) There is an integer m > 1 and a function o(z*) such that b
and ¢ in (2.1) can be represented in the form

(3.2a) bz, 2%) = _l;?kfb(z_*) (£, k any constants)
and
(3.2b) o(z, ) = —m((m + Dk — r) — L&)

(kz + o(z%))* *

In Case (), m =1 in (2.4), N, = 2)x and q(z, 2*) = 2p(z, 2*) in
(2.5). In Case (b),
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__ (=4rml £ -
(3.3a) Ay = T @ IL(m +2)k—r) (p=1,-,m)
and
Y 4
(3.3b) q(z, &%) = m .

Proof. If we substitute (2.4) in (2.3) and equate to zero the
coefficient of each occurring power of ¢, we obtain a system of m + 2
partial differential equations involving b(z, 2*), ¢(z, 2*), and the coef-
ficients q,(2, 2*), +++, ¢.n(2, 2*) and their first and second partial deriva-
tives. Let <{n) denote the equation corresponding to ¢". Then the
system is

<_1> Goor = 0

a Qo + 22¢q, = 0

<2/"—1> (2#——1)q2/12* + 2qu2;,_2 - 2(#'_1)("2/1—2,% =0

(#: 2, ...’rm,)

2m+1) 2LQy — Mo = 0

(where {2¢—1)> must be ignored if m = 1). Setting
(3.4) ©:u(2, 2%) = 2Dyl2, 27)
we see that the p,.(z, 2*) satisfy the simpler system

(a) Doox = 0

(3.5) (b)  Dss + 2¢p0, =0
(¢) (2¢—1) pyps + 2Lpy, = 0 (t=2,-++,m)
(d) me =0

(where (3.5¢) must be ignored if m = 1). We set q(z, 2¥) = zp(z, 2%).
Then (2.5) and (3.4) imply

(3.6) D22, %) = Ny 0(2, 2%)" (=20, m).

We have )\, = 1, thus ¢, = 1, and (3.5b) now gives

(3.7) ¢z, 2) = —_);_ Par

Let m = 1. Then the only other equation to be considered is (3.5d)
with m = 1, and because of (3.6) and (3.7) it takes the form

Doax + bpz* - _“_‘;2 PP = 0 .

From this and (8.7) we obtain (3.1) where » = A,/2.
Let m > 1. Then (8.5¢) with ¢ = 2 and (3.7) give
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bz, 2*) = \p — P where A= 2z — SM
P 2

z*

Substituting this and (3.7) in (8.5¢) with any g, 3 < < m, and
simplifying the resulting equation, we arrive at

(3.8) p. = —kp®
where

_ _ A 1 (2p—1) N, Ay
3.9 = £ .
( ) k p~2 + (/1——1) (/,!—2) { 2)\4211—-2 2 }

By integrating we have

1

TG (o(z*) analytic)

(3.10) p(z, 2*) =

and obtain (3.3b). Furthermore, we now see that
b(z, ") = (A + 2k)p(z, 2¥)

and, setting ) + 2k = £, we obtain (3.2a). Substituting (3.2a), (3.6) —
(3.8) in (3.5d), we see that a factor \,,p™p, drops out and we are
left with an equation for »,. The solution is

(3.11) A = —2m((m + D)k — k) .
Form (3.9) and (3.11) it follows that

_2(m—p+1l) _ -1, ...
2p—1) ((m + Wk E)\ge (=1, ,y M) .

The solution is (3.3a). Finally, from gq(z, 2*) = 2zp(z, %), (3.10), and
(3.11) we obtain (3.2b). This proves that Le P, implies (3.1)—(3.3).
Conversely, starting from (3.1)—(3.3) we obtain L e P, and the proof
is complete.

2n =

4. Some applications. We first note that if L is such that
in (8.2b), £/k = m + n (n any natural number), then (3.3a) may be
written

_ (=4k)rm) I'(m+p+1—x/k)
(m—p)! @) I'(m+1—k/k)

4.1) Naye

Taking £k =0, we see from Theorem 1 that L, in the special
Delassus equation

%
E__ m/w(z)uzo

Lou: = U, + -
' o(z¥) o(z*)
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is of class P, and a corresponding Bergman operator has the simple
generating function

. B m (4k)* 2t* “
9,(z, 2%, t) = m! ”ZZO (m— )l (22! ( a(z*) ) |

If in case (b) of Theorem 1 we require ¢ to be of the form
q(z, 2*) = §(r), where » = zz*, then o¢(z*) = 1/z* and the only equation
with L e P, satisfying that condition is

Uy + KZFOU + NO*U = 0, o = (kzz* + 1)

where 7 = m(m + 1)k — k. This generalizes a theorem for the equa-
tion (2.6), recently obtained by W. Watzlawek [12] by entirely dif-
ferent methods.

Taking £ = 0, we obtain from Theorem 1 the following theorem,
which generalizes the main result in [10].

THEOREM 2. The operator L, defined by
4.2) Low: = s, + (2, 29U = 0

18 of class P, if and only if (@) or (b) holds:
(@) c¢(z,2%) can be represented in the form c(z,z*) = Ap,. where
N is any constant and p(z, 2*) satisfies the differential equation

P, — —’2“—102 = 4(2) (6(z) arbitrary) .

(b) There is an integer m > 1 and a function o(z*) such that
o'(z")
(kz+0(z%)* *

In case (@), m =1 in (2.4), », =21 and q(z, %) = 2p(z, 2%). In
Case (b),

(4.3) c(z,2%) = —m(m + 1)k

Aaw = (—4k)* (m + ﬂ)
m —

and q(z, z*) is given by (3.3b).

If Le P, then (2.2) (with ¢ given by (2.4)) may be converted to a
form free of integrals. In fact, u(z, 2*) = (Bf) (z,2%) can then be
written :

(4.4) ue, 7 = 5 B 4., 29 @

where
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2on — a VIB@,Y+3)  me
IO = a1 “*

where a, are the coefficients of the development

f@:gm%

This was proved in [6]. For (2.6) this representation is identical with
a representation derived by K. W. Bauer and E. Peschl (cf. [1—3])
by means of the theory of automorphic functions and used for develop-
ing a function theory of solutions of (2.6). We mention that (2.6)
was also investigated by M. Eichler [5] and I. N. Vekua [11], and a
special case of (2.6) plays a role in the study of minimal surfaces by
H. A. Schwarz.

Furthermore, (4.4) and results by W. Watzlawek [13] imply that
the notion of fundamental systems of solutions of ordinary differential
equations may be generalized to partial differential equations (2.1)
with Le P.
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