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Let K(x) = Q(x/lx|)|z|™* where 2(¢),{&] =1, is a real
valued function which is in Lip «,0 < a <1, on the unit
(k — 1)-sphere S in k-dimensional Euclidean space, Ej, k = 2
with the additional property that S 2(&)da(€) =0 where o is

S

the natural surface measure for S. (K(x) is usually called a
Calderéon-Zygmund kernel in Lip «.) Let 1 be a Borel measure

of finite total variation on £ and set ,a(y)z(er)—"S e Y. d n(w).
Eg
AlsoAdesignate the principal-valued Fourier transform of K
by K(y) and the principal-valued convolution of K with ¢ by
f(x). Define I,(x) = (27r)’“S e VIRR(y) a(y)e'”-2dy. Then if k

Eg
is an even integer or if £k = 3, the following result is estab-
lished: limg_ . Ir(x) = A(x) almost everywhere.

In [5] V. L. Shapiro proved that the conjugate Fourier-Stieltjes
integral of a finite Borel measure g in the plane FE,, taken with re-
spect to a Calderén-Zygmund kernel K(z) in Lip «,1/2 < a <1, is
almost everywhere Abel summable to the principal-valued convolution
K=y, The purpose of this paper is to extend this result to E, and
to even-dimensional E, for K(x) in Lip «, 0 < a < 1. The first author
will obtain the corresponding result for the odd-dimensional cases
k=2s+ 1,s = 2, in a paper to appear, by the use of special functions.
Also, the results of the present paper should be compared with
Theorem 2 of [6, p. 44].

2. Definitions and notation. For xz= (z,---,2,) and y =
Yy =+, y) put (@, %) = 2y, + +++ + B (2] = (x, 2)"* and B(x, t) =
{y: |l —y| <t}. We will work with a fixed Calderon-Zygmund kernel
K(x) = Q(x/|z)/|x|*F where 2(%), |&] = 1, is a real-valued function de-
fined on the unit (¥ — 1)-dimensional sphere S in Euclidean space E,,
k=2, and SSQ(E)dG(E) = 0, where o is the natural surface measure

for S [2, Chapter 11]. We define K(z) to be in Lip « if |2(%) — 2()| =
0(/& — 7% for some a,0 < a < 1. The Fourier transform of a Borel
measure # in E, of finite total variation is denoted as usual by

(1) i) = (271')“"SE =19 1(1p)

k
and by the principal-valued convolution fi(x) we mean

231
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(2) IME K@ — y)dpy)
t—0 Ep—B(z,t)

which is known to exist and be finite almost everywhere [1, p. 118].
The formal conjugate Fourier-Stieltjes integral of p is given by

(3) 0| e iRy

Z

where

K(y) = (27)~* lim e=0% K(x)da

t—0;7'—0c SB(O,T)—B(O;H

is the principal-valued Fourier transform. We will denote the Abel
means of (3) by

(4) Ly(@) = (27r)"jE e~ g i) R(y)dy, R > 1.
k

With » = (k¢ — 2)/2, P} will designate the Gegenbauer polynomials de-
fined by the equation

(5) (1—2pcos0+pz)—lziopnp,f(cose),ogp<1.

These functions allow us to form the Laplace series >.r., Y,(&) of
surface harmonics attached to 2(¢) on the unit sphere S in E, by
means of the equation

(6) v, = LN e, pieepdot)

(see [2, Chapter 11]). Formulas (5) and (6) give the Poisson integral
representation

S oy ey = LD A= 0)20)do()
7 Y,.(8) =
( ) n% 1Y %(g) o+t SS (1 . 2(0(5’ 77) + p2)2+1
which is valid for 0 < p < 1. The assumptions on 2(¢) imply that
Y, (&) = 0.

3. The main theorem. Our principal theorem is

THEOREM 1. Let K(z) = Qx/{z))/|z|* be a Calderén-Zygmund
kernel in Lipa, 0 < @ < 1. Let pt be a Borel measure tn E, of finite
total variation. Let k =3 or k = 2s where s 1s a positive tnteger.
Then limg_.Ix(x) = fi(x) almost everywhere.
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OQur proof will closely follow the original proof in [5]. We shall
use, in addition, generalizations of certain statements in [5] obtained
by V. L. Shapiro in [6]. Before outlining the proof, we will need
some lemmas.

4. Basic lemmas. Throughout the balance of this paper, >.7_,Y.(&)
will designate the Laplace series for 2(&) on the unit sphere S in E,.
We will denote sup {Y,(&):|&] =1} by {|Y,|l.. The proof of the fol-
lowing lemma is given in [6, p. 69].

LEMMA 1. (i) For each 7,0 <7 < @, Sy | Yo lle/nFEE < oo,
(i) K(y) exists everywhere and if

y =0, K(y) = nZ:l(~i)”Yn(y/lyI)F(n/Z)/2k7T"’2F((% + k)/2) .

Also, K(O) = 0 and the series converges absolutely and uniformly.
Next we set

HY(R) = {["(n/2)/2**"((n + k)/2)}§:°e“/Rtk’2Jn+(kmgl(t)dt ,

R>1;n=12+-;k=2,3,-+-, where J,,;{®),»=((k —2)2, is a
Bessel function of the first kind of order n + . The H}(R) arise
naturally in the computation of I.(x).

LEmmA 2. (i) 0= HXR) £1,lim,.. H(R) =1,
(ii) 0 < H}(R) < Const. Rfn~*?,
(ii)) 37l Yall-Hi(R) = O(R*) as R — .

The first statement of (i) is proved in [6, Lemma 24, p. 64].
Also, as in formula (25) of [6, p. 56], we may express HF(R) by use
of Euler’s integral representation for hypergeometric functions as
follows:

(8) HIR) = (B2, (0 — 12| /4L — O 4L + LeRY)-Hra,

where B(p, q) is the usual Beta function. From this follows the second
statement of (i). Part (ii) is a consequence of the inequalities |J,.,(¢) | <¢*
[8, p. 60, Ex. 5] and I"(n/2)/2**'((n + k)/2) < Const. n=** [8, p. 58].
Part (iii) is a consequence of (ii) and Lemma 1, (i).

In what follows we will set p =11+ 1/R*—1/R, R>1. We
note that 0 < p <1 and p—1 as R— . Our proof of the main
theorem is based upon showing that 3., H¥(R)Y,(¢) behaves some-
what like 37, 0"Y,(§). Next we state some lemmas which relate o”
to the H}(R). In the case that k is a positive even integer, HF(R)
can be computed in closed form. Consider, for example, the formula
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Swe‘“’J»(t)dt = (1 +a)* —a) /L + )" a>0,v> —1]7, p. 202]. By

differentiating the integral and replacing a by R and v by the ap-
propriate integer, one shows that

(9) HXR) = n’lsje‘”’"tJﬂ(t)dt 0" + 1/R) ™M1 + n~(RVI + /B)}

and that
4 . 1 —t/R
HiR) = o e e nted byt
(10) = T IR+ ——-_—3((’;11)) (RVI T 1R
+ m(lﬁ/l 1/R2)*‘}

and so on. The general formula for H2(R) = (n(n +2) -+ (n+ 2s—2)) .
Sme“t’RtsJMs_l(t)dt, s = 1, is obtained by induction. We formalize this
0

in the next lemma, whose proof we leave to the reader.

LEMMA 3. For s =1 put Ci(n) =1, Ci(n) = 1/n. For s=2 let
the coefficients Ci(n),n = 1,1 < j < s be determined by

Cim) =b(n,s — D{G +s — DCZH(n + 1)

(1 +(n+s—1DCn+1) — @G +DCHin + 1)}

where b(n, s) = (n + D)(n + 3)«++(n + 28 — )/n(n + 2) -+ (n + 2s) and
where we agree to set Ci'(n+1) =1 and C:'(n+1) = Cii(n+1) = 0.
Then

(12  Hp(®R) = o~ (/TT TR {1 + 3 @I T I7R) 7} -

Next let S(5,1 —p) ={n:in| =1,En >cos(1 — o)}, 6] =1,0<
1 — p < 1, denote the spherical cap centered at & of curvilinear radius
1 — p. Fix the North pole of S at & and write >.7., 0"Y.(8) — 2(%)
in the Poisson integral form

'+ 1) S A = o)) — 2E)da(y)
2etit Js (1 =206, 7) + o)

A = (k — 2)/2. Using the standard argument [10, p. 90 and Th. 3.15]
we split the integral over the sets S(§,1 — p), S — S(§,1 — p) and
use the inequality (1 — o)1 — 20(, 1) + =¥+ < Const. (1 — p) X
A — &)y ", 1/2 < p <1, in the second integral to obtain, for 2(%)
in Lip a,

b
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(13) S MY.0 — 2@ = o — o))
uniformly in & as p—1.

LEMMA 4. Let Ci(n),1 =j = s;n=1beasin (11). Let0=<p<1.
Then >, p" Y, (8)Ci(n)| = 01) uniformly in p, &.

To establish the lemma we note that the recursion formula (11)
implies that the coefficients Cj(n) are ratios of polynomials in # with
integer coefficients and that the denominators are products of unre-
peated factors of the form % -+ p,» a nonnegative integer. Also,
because b(n, s) = 0(n~!) and C!(r) = 1/n, an obvious induction argument
shows that Cj(n) = 0(n™9) as n— <. It follows that each Ci(n) can
be written as a finite sum of the form 3> A%/(n + p)?, the A? being
independent of n. Hence, in order to establish the lemma it is enough
to prove that for ¢ a positive integer >.7., 0"Y,(§)/(n + p)? is uni-
formly bounded in o, & This follows at once from induction, integra-
tion, Lemma 1, and the fact that by Lemma 3, o> > 0"Y,(%
is uniformly bounded for 1/2 < 0 <1 and £ in S.

LEMma 5. Let K(x) = 2(x/|x|)/|x|* be a Calderén-Zygmund kernel
wn Lipa, 0 < o <1 on the unit sphere S in E,. Let &= z/|x| and
suppose It = 2s where s is a positive integer. Then

S HAR)Y,() - @) = 0R™)
uniformly in & as R — oo.

To establish the lemma, let 0 < o < 1 and put
I = | S (HP(R) — 0 (VT + 1/R) ™) Y,(8) |,
L= |35 (07 (VT + 1/R)~ — o) Y,(9) |,
L= |35 0"Y,(8) — 209)].
Recall that 0 = V1 + I/R* — 1/R. It is easy to see that O(R~®) as
R — <= is equivalent to 0((1 — p)*) as p — 1. Thus, I, = 0(R~*) follows
from (13). The same bound for I, follows from |0*~'(V/'T 4 I/R}) ¢+ —1|=
0(R~") and (13). By formula (12) of Lemma 3 and by Lemma 4, I,
is dominated by a finite sum of terms of the form

Const. (RV'T T 1/BY)~ z Y0, 1<i<s,

all of which are O(R™).
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Lemma 5 is needed to prove the main theorem in the even-dimen-
sional cases. For the case E, we shall have need of

LEMMA 6. Let K(x) = Q(x/|x))/|2® be a Calderén-Zygmund kernel
m Lipa,0<a<l, in E,. Let &=z/lz| and 0 <7 <, then
| S H(R)Y (&) — 2(8)] = O(R™7) uniformly in & as R — co.

To prove the lemma we put A, =0 and A4, = >, || Yill-. We
sum (1 — )30 || Y.[lo® by parts to obtain (1 — 0)"305 A,0" +
(1 — p)p"Ay. By Lemmal, () 37, || Y, |l.n’/n = C < . Since Ay <
S YL e(N/m)'T < N'"C, we have

1=~ O 0" Yl = (L = 0CX wp" = (1 — 0)* Const. (L — o)™,

where we have used the inequality >, n°0" < Const. 1/(1 — 0)'*?,
B>0,0<p<1. Next we observe from (8) that H%(R) is decreasing
as a function of %, in particular, H!R) < HXR) < HX(R). By (10)
and (9) we have p"*/(1 + 1/R*)** < H¥R) < p"'/(L + 1/R»**. It fol-
lows that

H3(R) — o"| = |o»"'/(L + 1/B)* — o} + [0*7'/(1 + 1/R*)** — o"|
< p" Const. R~ < Const. (1 — p)o" .

Therefore,

oo

> (Hi(R) — ") Y.(8)| + O0(E™)

n=1

S HAR)Y.() - 20)| =

< Const. (1 — p)iz]l [ Yallwp™ 4+ O(R™)
— O(R~7) + O(R—%) = O(R™) .

5. Proof of the main theorem. Let (D) (x) denote the
symmetric derivative of g [4, p. 175, Ex. 1]. Let |E| denote the
Lebesgue measure of E. If the total variations of the measures ((E) —

(Dsymp)(®)| EZ| are denoted by S ldp(y) — (Degmt)(x)dy| then it follows
as in the proof of Lebesgue’s Theorem [4, Th. 8.8] that
(14) lim | B, )] 1d(®) = (Dsymid@dy| = 0

Bz
almost everywhere. Thus, in order to prove Theorem 1, it is sufficient
to prove that at each point x for which (14) holds,

(15) lim {,(@) - | K(w — 9)dpu)} = 0.

Ep—B(z,1/R)
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With no loss in generality we will assume that = 0. Set . =0
in (4) and interchange the order of integration using (1). Next in-
troduce spherical coordinates »*“‘drdo(&’) = dy where & = y/|y] and
» = |y| and use Lemma 1, (ii) to obtain

10 = | dpt)|"re i ar S, (<0 L nf2)/2 7 (o + B/2)
| ey, @do@)

where 7 = w/|w|. By [9, p. 368 (2)] (with v =X = (k — 2)/2) the
integral over S is @r)** (—10)"Ju(rlw|)(r|w|)~*Y,(). Next, inter-
change summation and the integral in r. Letting 4, denote the term
in brackets in (15) we obtain

4y = Sz H(RIw]) Y,(@) ]~ dge(w) — | 9@ wdpt

E—B(0,1/

where Z = —w/|w]|. Next we write 4, = J, + J, + J, where
Jo=\ S VOBER W) wl ),

B(0,1/R)n=1

S = SEk-B(O,T)l: wx Y(OH(Blw]) — Q(E)]lw|"kdy(w), and

n=

L=\ S n@HER W) - 00 | witduw),

&= —w/lw|. If 0?;6(20) is replaced by dw in J, or J, the resulting
integral is zero. This follows from the uniform convergence of the

series and S 2{&)do(§) = 0. By Lemma 2, (ii),
S

.0 = Const. [ BO, UR) ™| dp(w) — (Dyyur(O)dur| = o(1)
B(0,1/R)

as R— co. In the case k = 2s, Lemma 5 gives |J,| = Const. T*

where 7T can be taken arbitrarily large. For J, we again use Lemma

5 to obtain

|J,! < Const. R~a§ |~ dpt(w) — (Degumpt)(O)dw | .
1/R

B(0,T)--B(0,
The proof of the fact that for fixed T, J, = o{l) as R — o is similar
to that given in [5, p. 14]. In the case & = 3, we replace « in the
above integrals by 7, where 7 is chosen so that 0 < v < @&, and use
Lemma 6.
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