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A family Sίf of subgroups of a finite group G is said
to satisfy (property) B * if whenever U = Hi n Π Hr is a
representation of U as intersection of elements of S^ of
minimal length r, then r S2. The aim of this paper is to
prove

THEOREM 1. Let H be a nilpotent Hall π-subgroup of a
group G and assume that if Hlf H2^Sπ(G) then iίi n H2<\HU

Then Sπ(G) satisfies B*.

All groups in this work are finite. A family Sff of subgroups of
a group G will be said to satisfy (property) B if there exist Ht and
H2 in £έf such that

We will denote by SP(G) the family of Sylow p-subgroups of G and
the (possibly empty) family of Hall τr-subgroups of G will be denoted
by SΓXG). It was shown by Brodkey [1] that if G possesses an Abelian
Sylow p-subgroup, then SP(G) satisfies B. Itδ has shown in [3] that
if G is of odd order, hence solvable by [2], then SP(G) satisfies B for
all primes. He has also shown that if G is solvable, then SP(G) satis-
fies B in several other cases.

As indicated above, we will consider here a more restrictive condition
5 * on families of subgroups of G. It follows from our main result,
Theorem 1, that even the property 5 * is satisfied by Sr(G), whenever
G possesses an Abelian or Hamiltonian (i.e., Dedekind) Hall 7r-subgroup.
Theorem 1 yields the following

COROLLARY 1. Let H be a nilpotent Hall subgroup of the group
G and suppose that the index [H: Hf]Hx] is prime for all
$eG—NG(H). Then either H<\G or for all xy yeG such that
xy~ι 0 NG(H) we have

Hx Π Hy = B < G

and [H: B] = p, a prime. B is independent of x and y.

2. Generalizations. As a matter of fact, we will prove a more
general result than Theorem 1. We will say that a group N satisfies
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(property) Dπ, where π is a set of primes, if N contains at least one
Hall r-subgroup, any two Hall τr-subgroups of N are conjugate and
each π-subgroup of N is contained in a Hall π-subgroup of N. The
set of all maximal π-subgroups of a group G will be denoted by SyL(G).
Theorem 1 follows from

THEOREM 2. Let the group G satisfy the following conditions.

( i ) If Hlf H2eSylπ(G) then C^H.ΠH^H, and

(ii) If C = Hy.Π H2^G, then NG(C) satisfies Zλ. Then SyL(G)
satisfies B*.

A subgroup N of the group G will be called a ττ-local subgroup
of G if N = NG(H), where H is a nontrivial π-subgroup of G. An
N.-group is a group all of whose π-local subgroups are solvable.
Theorem 1 yields the following

THEOREM 3. Let G be an Nπ-group and suppose that all its
maximal π-subgroups are Dedekind groups. Then Syl^G) satisfies B*.

As a consequence, we have

COROLLARY 2. Let G be a nonsolvable Nπ-group and suppose that
each He Sylπ(G) is a Dedekind group. Then there exist Hu H2 e Syl^(G)
such that:

o(G) ^ oiHMH*)

3. Proofs* We begin with a proof of Theorem 2. Let U —
flί Π Π Hτ be a representation of U as intersection of elements
of Syl-(G) of minimal length and suppose that r > 2. It follows from
assumption ( i ) and the minimality of r that

( 1 ) U^HyΓiHt^ C<\Ht1Hz.

The minimality of r also implies that C ς£ H3 and consequently C <β G.
By assumption (ii) N = NG(C) has the Z^-property and by (1)
H19 H2 e Sπ{N). There exists Q e Sπ{N) containing H, Π Π Hr Π N
and since the elements of Sπ(N) are conjugate in N, there exists
R G Sπ(N) such that Q Π R = C. Since Q and R are conjugates of
Hίy they belong to Syl^G). However,
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in contradiction to the minimality of r. The proof of Theorem 2 is
complete.

Theorem 1 follows immediately from Theorem 2 and Wielandt's
Theorem [4] which states that if G contains a nilpotent Hall π-sub-
group then G satisfies Zλ. Theorem 3 also follows immediately from
Theorem 2.

Corollary 1 follows from Theorem 1. Suppose that H <β G, and
let H19 H2e Sπ(G), H, Φ H2. Since by our assumptions and the above
mentioned Theorem of Wielandt [Hy\ Hx Π H2] is prime, it follows
t h a t # ; Π H2<\ H,. Let B = f\{H* \xeG}; obviously B <\ G and

s i n c e H <f\ G, B £= H. B y T h e o r e m 1 t h e r e e x i s t u, veG s u c h t h a t
f o r a l l x , yeG w e h a v e :

ΉUΓ)HV = BdHxΓ\Hy .

Suppose that xy-1 ί NG(H); then Hx Φ Hy and

V = [Hu: B] = [H*: B] = [Hx: Hx Π Hy\ [Hx Π H": B] .

Since [Hx: Hx Π Hy] > 1, it follows that H* Π Hv = B. The proof of
Corollary 1 is complete.

Finally, Corollary 2 follows from Theorem 3. Since G is a non-
solvable ΛΓπ.group, Γ\{H\HeSyl,(G)} = {1}. Consequently, by
Theorem 3, there exist H19 H2eSylπ(G) such that HL Π H2 = {1}.
Obviously o(G) ^ o(Hx)o(H2) and the proof is complete.
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