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G. T. Whyburn gave an elementary inductive proof of
the n arc theorem for Peano spaces, which had originally been
proved by G. Nobeling and K. Menger. In the course of doing
this he gave a necessary and sufficient condition for there to
be n disjoint arcs joining two disjoint closed sets A and B
in a Peano space S. In this paper we split the set A into n
disjoint closed subsets AuA2,- ,An and give a necessary
and sufficient condition for there to be n disjoint arcs joining
Ai u A2 U "An and B in S, exactly one arc meeting each Ai%

Our proof uses the inductive technique that Whyburn in-
troduced.

In this paper we present a theorem and a conjecture that arise
from [2],

We first recall some definitions from [2]. Let A, B and X be
closed subsets of a topological space S. We say that X broadly sep-
arates A and B in S if S — X is the union of two disjoint open sets
(possibly empty) one of which contains A — X and the other of which
contains B — X. The space S is n-point strongly connected between
A and B provided no set of less than n points broadly separates A
and B in S. An arc ab joins A and B if ab Π A = {a} and ab Π B —

The following theorem, in which we have replaced "completeness"
by "local compactness," appears in [2]. It is called the second n-arc
theorem by Menger in [1].

The Second N-Arc Theorem. Let A and B be disjoint closed sub-
sets of a locally connected, locally compact metric space S. A necess-
ary and sufficient condition that there be n disjoint arcs in S joining
A and B is that S be n-point strongly connected between A and B.

In § 2 we split the closed set A into n disjoint closed subsets A19

A2, •••, An. The theorem then gives a necessary and sufficient condi-
tion for there to be n disjoint arcs joining A and JS, one meeting
each A4.

In § 3 we split A and B into disjoint closed subsets Aιy AZi , An

and B19 B2, « ,i?n. The conjecture then gives a necessary and suf-
ficient condition for there to be n disjoint arcs joining A and J5, one
meeting each A{ and one meeting each Bι. (I have given a proof of
this conjecture for the case n — 4, which is the first case that offers
difficulties, but it is not included here.)
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It will be noticed that the space S in the theorem and in the
conjecture is not actually a Peano space, as the title of the article
states, but it becomes one when the property of connectedness is
placed on it.

2* The theorem* Let A19 A2, " ,An and B be disjoint closed
subsets of a topological space S. We shall say that a subset X of S
is a large point of S (with respect to Aly A2, , An) if it is a one-
point set or one of the sets A*. We shall say that S is n-poίnt strongly
connected between Alf A2, * ,An and B provided the union of less

than n large points does not broadly separate Ax U A2 U U An and
B in S.

We shall say that a system of n disjoint arcs in S joins

A u A 2 , •••, A n

and B if each arc joins Aί (J A2 (J U An and B and each A{ is joined
to B by exactly one of the arcs.

THEOREM. Let Aly A2J •••, An and B be disjoint closed subsets of

a locally connected, locally compact metric space S. A necessary and

sufficient condition that there be n disjoint arcs in S joining

A19 A2, •••, An

to B is that S be n-point strongly connected between Aλ, A2, •••, AΛ

and B.

We need two more definitions for the proof of the theorem. Let
A19 A2, , An be disjoint closed sets in a topological space S, and let
βu βz, " , βm be disjoint arcs in S. We shall say that A{ is a zero,
a single or a multiple with respect to βu β2, , βm according as to
whether it meets zero, one or more than one of the arcs /3i, β2, , βm.
A subarc β of some β{ is said to be a bridge of βlf β2, , βm spann-
ing Ax, A21 - , An if β joins some A3- to some Ak1 for j Φ k. Clearly
there are only a finite number of bridges in βly β2, , βm spanning

Proof. Using the terminology and notation of the theorem, it is
clear that the condition is necessary for the existence of n disjoint
arcs joining Alt A2, , An to B in S. So we turn to proving that it
is sufficient.

By the arcwise connectivity theorem, the condition is sufficient
for n = 1. So we assume its sufficiency for each positive integer <n
and prove its sufficiency for n by induction.
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By the second %-arc theorem there are n disjoint arcs β19 β29 , βn

in S joining ^ U Λ U U 4 and B. Let p be the number of singles
of A19A29 9An with respect to β19 β2, , βn. We shall suppose
that p < n and show how to construct a second system of n disjoint
arcs joining Aλ (J A2 U U An and 5 with respect to which the num-
ber of singles is p + 1. The process can be repeated n — p times to
obtain the desired system of arcs joining Al9 A2, , An and B.

Let A19 A29 , Ap be the singles, Ap+19 Ap+2, , Aq the zeros and
Aq+19 Aq+2, •• , An the multiples of A19A29 9An with respect to
A, β2, •• ,/8w. Since p<n there is at least one zero and at least
one multiple here. We shall construct a system of n disjoint arcs
joining A1 U A2 U U An and B with respect to which A19 A2, , Ap+1

are singles. To this end we consider the locally connected, locally
compact space S — Ap+2 U Ap+i U U An. Since it is (p + l)-point
strongly connected between A19 A29 , Ap+1 and B and p + 1 ^ q < n,
it follows from the inductive hypothesis that it contains p + 1 dis-
joint arcs a19 a2, , ap+1 joining A19 A29 , Ap+1 and 5 . We suppose,
further, that ar meets Ar for r ^ p + 1.

We now use an inductive technique that is familiar from [2]
We relabel &, β29 , /9TO so that /9r meets ^4r for r <^ p, and we start
by defining ar = oCr Π Ar for r ^ p + 1 and /5r = βr for r ^ p. Now
we suppose that we have defined systems of arcs a?9 a™, , a™+ι

(possibly degenerate) and /5Γ, β?, , /δ? such that (a) α r Π ̂ 4.r c a™ c 6ir

and αΓ does not meet B U βP+1 U /3P+2 U U /Sn, (b) / 5 s n δ c / 3 Γ c / 9 s ,
(c) if ^4r, /3Γ meet then αΓ is degenerate, (d) if a™, β? meet then they
meet in a common end point, (e) exactly one of the sets

a? U A19 aT U Λ , , K+ί U A
p+1

fails to meet β? U /52

m U U /3J1, (f) if 6m is the number of bridges of

β?, β?, - , βv t h a t span

ax U A19 a2 U A2f , α p + 1 U Ap+1,

then 6m < bm^ for m ^ 1. We now show how the induction may be
continued to the next stage and how it leads, after at most a finite
number of stages, to the construction of n disjoint arcs joining

A u Λ u u An

to B with respect to which Alf A2, •••, Ap+1 are singles.

We proceed by denoting by a? U At the set, given in (e), which

does not meet /SΓ U βT U U β%. We let a; be the first point of at

in the direction atf] At, at Π 5 that belongs to the union of the three

sets β? U βT U U βp9 βP+ί U /9P+2 U U βn and



354 J. H. V. HUNT

ί-AUftU UA

We consider separately the three mutually exclusive cases (1)

x e βT U βT U U βp ,

(2) x G βp+ί U βP+2 U U βn and (3) a e JS - ft II ft U U ft.
We first consider case (1) and let x e β%. We define a?+1 = αΓ

for r ^ ί , r ^ p + 1, and αΓ+1 as the subarc of at whose endpoints
are at Π At, x. We define /3Γ+1 = /SΓ for s Φ u, s ^ p, and /3™+1 as
the subarc of βZ whose endpoints are βuf)B,x. It is easily seen
that (a)—(d) of the inductive hypotheses are preserved. In order to
verify that (e) is preserved, we notice that it follows from (a)—(d)
that each β? meets at most one a? U Ar. Thus it follows from (e)
that the relation (α* U Ar) Π βT Φ 0 establishes a one-to-one corre-
spondence between the collections βT, βT, , /3™ and

U A , ocT U Λ , , αΓ-i U At_u aT+1 U At+lf , < + 1 U A
p+1

If we now let a™ U Av be the set that correspond to βZ under this
relation, it is clear that by (d) αΓ+1 U Av does not meet

βT+1 U βT+1 U - U β%+1 ,

and that it is the only set among a?+ι U A19 a?+i U A2, , α^+i1 U Ap+1

with this property. It is clear that (f) is also preserved, since

08? - βZ+ι) U M

is an arc that joins a™ (J Av and a? \J At9 and so it contains at least
one bridge of /3Γ, β?, , βϊ spanning a, U Λ, a?\jAz, , α p + 1 U A p f l

that is not contained in β?+1 (J βT+ι U U β7+1; i.e., &m+1 < 6m

Thus in case (1) the inductive hypotheses are preserved. We
notice that it follows from (f) that case (1) can occur for only a finite
number of values of m, since b0 is finite. Thus case (2) or case (3)
must eventually occur. We complete the proof of the theorem by
showing that in either of these cases we can readily obtain a system
of n disjoint arcs joining Ax U A2 U U An and B with respect to
which A19 A2y , Ap+1 are singles.

We shall only deal with case (2), as case (3) is practically identi-
cal to it. Thus we let x e ft,, p + 1 ^ w ^ n. We define a as the
subarc of at whose endpoints are atV\ At, x and β as the subarc of
βw whose endpoints are βwf)B, x. We first notice that it follows
from (a)—(d) that if α* u Ar, βT meet, then a™ (j /3Γ is an arc joining
Ar, B. Since a one-to-one correspondence is established between the
collections

aT U A19 aT U Ai9 , aT-x U Λ- i , atT+1 U At+1, , α£ + 1 U AP+ί
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and /9Γ, β?, •••,£? by the relation « U Ar) Π /9Γ ^ 0 it follows that
the union of

αΓ, «Γ, , αΓ-i, αΓ+i, , < + i , /SΓ, /3Γ, , /S?

may be expressed as a union of p disjoint arcs joining

Aί9 A2i , Λ ^ J , -A* + i, , ^ip+i

and 5 . Furthermore, by (a), (b) these arcs are disjoint from the arcs

AH-I, &,+2, , βra-if β*+u - * -, βn, «, /3. Thus the union of

or, αΓ, , αΓ-i, αΓ+i, α?+i, /9Γ, ftw, , £?,

βp+l, βp+2j * ' ' , βw-U βw + ί, ' ' , βn f

α, /3 may be expressed as a union of 7t disjoint arcs joining

and 5 with respect to which Al9 Az, •••, Ap+1 are singles. This com-
pletes the proof of the theorem.

3. The conjecture* Let Aί9 A29 , An and Bu B2, Bn be dis-
joint closed subsets of a topological space S. We shall say that a
subset X of S is a Zαr#β ^omί of S (with respect to A19 A2, , An

and Si, 5 2, , Bn) if it is a one-point set, a set Aif or a set J5t . We
shall say that S is n-point strongly connected between Au A2, , A^
and Bu B2, , Bn provided the union of less than n large points does
not broadly separate Aι (J A2 (j U il» and Bγ (J -B2 U U Bn in S.

We shall say that a system of w disjoint arcs in S joins

A^A2,---,An and B1} B2, •••, Bn

if each arc joins Λ u Λ U U i ^ and Bλ U -B2 U U Bn, and each
Aι meets just one arc, and each Bζ meets just one arc.

Conjecture. Let Au A2, , An and Bly B2J , Bn be disjoint closed
subsets of a locally connected, locally compact metric space S. A
necessary and sufficient condition that there be n disjoint arcs in S
joining A19 A29 , An and Bly B2, , Bn is that S be n-point strongly
connected between A19 A29 , An and Bu B2, , Bn.

The necessity of the condition is again trivial, so it is the suf-
ficiency of the condition that is interesting.

The conjecture is clearly true if the sets

A19A2, ,An and BuB2,--9Bn



356 J. H. V. HUNT

are compact. For in this case the quotient space Q obtained by iden-
tifying a pair of points if they belong to a common A{ or a common
Bj is locally compact, locally connected and metrizable. If π is the
natural projection from S onto Q, it is clear that Q is w-point strongly
connected between

π(A) U π(A2) U U π(AΛ) and π{Bλ) U π(B2) U U π{Bn) .

Consequently it follows from the second %-arc theorem that there are
n disjoint arcs in Q joining

τr(A) U π{A2) U U π(An) and n{B,) (j π(B2) (j U π(BΛ) .

The 7r-inverse of each of these arcs contains a connected closed set which
meets both A.U A2[j [jAn and B, (J B2 (j U £ w , from which it
easily follows that there are ^-disjoint arcs in S joining A19 A2, , An

and B19Bif ••-,£..
When some of the sets A19 A2, , An or J?lf S2, , Bn fail to be

compact, the above argument does not suffice as the quotient space
Q is not in general metrizable.

There ought to be a combinatorial proof of this conjecture along
the lines of the proof in § 2, which would work equally well whether
some of the sets Aί9 A2y , An or Bιη B2, , Bn fail to be compact
or not. Such a proof has been given for the case n = 4, as was re-
marked in paragraph § 1.
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