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Let S denote a Banach Space, B the bounded linear
transformations on S, and let Q and A denote functions from
[0, oo) into B with Q continuous. The objective here is to
derive a Green's function KA and hence an integral invert-
ing operator RA for the singular boundary value problem

[Y1 -QY=H
(1)

U(0)Γ(0) + Km A(cn)Y(cn) = 0 ,

where {cΛ}~=1 is a positive, increasing, unbounded number
sequence and H is a continuous function from [0, oo) into S.

The method here provides Green's functions for singular boundary
value problems associated with nonself-adjoint, as well as self-adjoint,
linear differential expressions. The asymptotic boundary conditions in
(1) permit one to extend some of the regular two-point boundary
value problem techniques suggested by [3] and [4] to the singular
case without being restricted to the Hubert Space L2[Q, oo). Simi-
lar, but different, asymptotic boundary conditions are used by Cod-
dington and Levinson in [2, Chapter 10], and by Benzinger [1].

As noted in § 3 of [3] there exists a unique continuous function
M from [0, oo) x [0, oo) to β so that if each of x, t, and u is in
[0, oo),

( i ) M^x, t) = Q(x)M(x, t) and M(t9ί) = I
(ii) M(x, t)M(t, u) = M(x, u)
(iii) if H is a continuous function from [0, oo) to S and a is in

S, then the only function Y such that Y' - QY = H and Y(0) = a
is given by

Y(x) = M(x, 0)α + Γ dt M(x, t)H{t)
Jo

for all x in [0, oo).

DEFINITION. A is a determinate boundary condition function for
Q on c19 c2, ••• means that if H is a continuous function on [0, oo)
and Y is a solution of the boundary value problem (1) for the non-
homogeneous term H, then Y is unique.

NOTATION. If A is a boundary condition function for Q on c19

c2, and n is a positive integer, let Tn denote the transformation

379
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[A(0) + A(cn)M(cn, 0)].

THEOREM 1. A is a determinate boundary condition function for
Q on cly c2, if and only if the convergence of {Tna}Z=ι to zero implies
that a is the zero of S.

Proof The proof follows from property (iii) of the M function
and the linearity of the problem.

NOTATION. Let Do denote the continuous functions with compact
support on [0, oo).

THEOREM 2. Suppose A is a determinate boundary condition
function for Q on clf c2, the following two statements are equiva-
lent.

( i ) There is an integral inverting operator RA with kernel KA

of the form

(M(x, 0)KA(0, 0)M(0, t) ifO^t^x
ΛX' } ~ [Mix, 0)[KΛ(0, 0) - I]M(0, t) ifθ^x<t

for boundary value problem (1) so that DQ is a subset of the domain

of RA.

(ii) There is a transformation π in B such that if a is in Sf

then {Tn(πa)}n=1 converges to A(0)a.

Proof. Assume ( i ) holds; if H is in Do and U — RAH, then U
is a solution of boundary value problem (1) and so

lim [A(0)U(0) + A(cn)U(cn)] = 0.

Let b denote a positive number so that if x > 6, H(x) — 0; then, if

A(0) U(fi) + A(cn) U(cn) = A(0) Γ dt [KA(0, 0) - I]M(0, t)H(t)
Jo

+ A(cn) [ dt M(cn, 0)KA(0, 0)M(0, t)H{t)
Jo

= Tn(κAφ, 0) I] dt M(0, t)H(t))

-A(0)\" dtM(0,t)H(t)
Jo

and so
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lim τJκA(0, 0) [" dt M(0, t)H(t)) = A(0) Γ dt M(0, t)H(t) .
n->oo \ Jo / JO

Now, if a is in S, define H as

(M(t, 0)(2 - 2t)a if 0 < ί < 1

(0 if t > 1 .

H belongs to Do and Ϋ dt M(0, t)H{t) = a, so (ii) holds with π = KA(0, 0).
Jo

Now, assume ( i i ) holds; since A is a determinate boundary con-
dition function for Q on cίy c2, •••, π must be unique. Define KA on
[0, oo) x [0, oo) as

{ } ΛX' } ~ [M(x, O)[τr - J]M(0, ί) if 0 ^ x < t

and let RA denote the integral operator with kernel KA. Let H be
in Do and b denote a positive number so that if x > 6, H(x) — 0.
Define U on [0, oo) as

Γ dt M(x, 0)πM(Q, t)H{t)

+ Γ dt Mix, 0)[7r-I]ikf(0, t)H{t) if O^x^b
Jx

" dt M(x, 0)πM(0, t)H(t) if x > b .
0

Differentiation yields that U'{x) — Q(x) U(x) = H (x) for each x in [0, oo)
and if cn > 6,

A(0)U(0) + A(cn)U(cn)

= Tn(π[b dt Jkf(0, t)H(t)) - A(0) Γ dt M(0, t)H{t) .
\ Jo / J o

By the definition of π, limn^[A(0)U(0) + A(cn)U(cn)]=:Q and so (i) holds.
For the remainder of the paper suppose that A is a determinate

boundary condition function for Q on clf c21 •••, condition (ii) in
Theorem 2 holds and KA is defined on [0, oo) x [0, oo) by (2). (Con-
dition (ii) is implied, for example, in case the sequence {Tn}~=ι con-
verges in norm to a regular element of B\) Let D denote the set

of continuous functions H on [0, oo) such that I dt KA{x, t)H(t) exists
Jo

for each x and furthermore, if U is defined as

U(x) = dt KA(x, t)H{t) for x in [0, oo) ,
Jo

then U is a solution of boundary value problem (1) for the nonhomo-
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geneous term H. Let RA denote the integral operator with kernel
KA and domain D; i.e., if H belongs to D

(RAH)(x) = [°dt KA(x, t)H(t) .
Jo

Two aspects of the present development which differ from other
treatments of Green's functions for singular boundary value problems
are: (1) the Green's functions here are not necessarily square integrable
in either place and (2) the domains of the associated integral
inverting operators are not restricted to functions which are square
integrable on [0, oo). However, the domain of RA does depend upon
the problem, i.e., upon the particular Q and A involved. This de-
pendence is the subject of the following two theorems.

Two sets of continuous function on [0, oo) which are relevant to
the description of D are defined as follows. Let Dι denote the collec-
tion of continuous functions H on [0, oo) for which there exists a solu-
tion of (1) for the nonhomogeneous term H. Let D2 denote the col-

S oo

dt(π — I)M(0, t)
0

H{t) exists.
It is clear that D is a subset of the intersection of Dλ and D2;

not so obvious is the extent to which Dι Π D2 is contained in D.

LEMMA. Suppose H belongs to Dλ Π D2; let Y denote the solution

of (1) for H and let X{%) = Π dt KA(x, t)H(t) for all x in [0, oo),
Jo

then
Tn [Y(0) - X(0)) = [A(0)Γ(0) + A(cn)Y(cn)]

+ [A(0) - Tnπ] [ndt M(0, t)H(t)
Jo

dt(π-I)M(0,t)H(t)

for each positive integer n.

Proof. Let n denote a positive integer; property (iii) of the M
function provides that

Y(cn) - M(cn1 0)Γ(0) + M(cn, 0) [ndtM(0, t)H{t) ,

Jo

SO

Tn Γ(0) - A(0) F(0) + A(cn)M(cn, 0) Γ(0)

- A(0)F(0) + A(cn)Y(cn) - A(en)M(cn9 O)[ndt M(0, t)H(t) .
Jo
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Also,

TnX(0) = [A(0) + A(cn)M(cn, 0)] \~dt(π - /)Λf (0, t)H(t) .
Jo

A straightforward computation provides the result of the lemma.
The domain D of the inverting operator RA may be studied for

the following three cases.

Case 1. There is an increasing sequence of positive integers nlf

n2, such that T~\ exists for all i and the transformation sequence
{T~:}T=i is uniformly norm bounded.

Case 2. There is an increasing sequence of positive integers n19

n2, such that T~\ exists for all i, but no subsequence of inverses
is uniformly norm bounded.

Case 3. There is a positive integer N such that if n> N, then
T" 1 does not exist.

Note. Case 1 above is a sufficient condition for a function A from
(0, oo) into B to be a determinate boundary condition function for Q
on cχ1 c2,

THEOREM 3. Suppose Case 1 above holds; if H is in Dx Π A then
H is in D if

lim [A(0) - Tn.π] [nί dt M(0, t)H(t) - 0 .
i-*oo Jo

Proof. By the lemma and existence of T~\ for all i, we obtain
in the notation of the lemma that

Y(0) - X(0) = T-}[A(0)Y(0) + A(cni)Y(cni)]

+ T-}[A(0) - Tniπ] J ^ dt M(0, t)H(t)

- Γ dt(π-I)M(0, t)H{t) for each i .

H in A provides that lim^o. Γ dt(π-I)M(0, t)H(t) = 0 and Y satis-

fies the asymptotic boundary condition so

F(0) - X(0) = lim T~}[A(0) - T%iπ] \%i dt M(0, t)H{t) .

Now, if lim [A(0) - Tn.π\ [ni dt M(Q, t)H(t) = 0, then Γ(0) - X(0) = 0
i-»oo Jo
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and so Y = X, i.e., X is the unique solution of (1) for H and so H is
in the domain of RA.

A subcase of Cases 1, 2, and 3 above is that the transformation
sequence {!ΓΛ}»=i be uniformly norm bounded, which occurs, for example,

with S = E2 and Tn = ΓJ Q! w o d d ' ίo ί ] ί f n i s even*

THEOREM 4. Suppose {Tn}~=i is uniformly norm bounded; if H is
in DLf] D2, then H is in D if and only if

lim [A(0) - Tnπ] Γ* dt M(0, t)H(t) = 0 .
n->oe> J o

Proof. Let H denote a function in D1Π D2\ by the lemma

Tn[Y(0) - X(0)] = [A(0)Γ(0) + A(cn)Y(cn)]

+ [A(0) - Tnπ] [dt Jlf(0, t)fT(ί)
Jo

for each positive integer n. Where Y denotes the solution of (1) for
H and X is defined on (0, oo) by

X(x) = [°dt KA(x, t)H(t) x in [0, oo) .
Jo

F satisfies the asymptotic boundary condition so

The transformation sequence {Tn}~=1 is uniformly norm bounded and H
is in A so

lim T% Γ ώ ( τ r - / ) M ( 0 , t)fl (ί) = 0 .
ίt-»oo J

So

lim TM [ Γ(0) - X(0)] = lim [A(0) - Tnπ] [* dt M(0, t)H(t) .
J

The result of the theorem follows from A being a determinate
boundary condition function.

The following example illustrates the subcase for a Case 1 pro-
blem and shows that the domain of RA may be a proper subset of
A Π D2.
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EXAMPLE. Let cly c2, denote a positive, increasing, unbounded
number sequence. Consider the singular boundary value problem as-
sociated with the differential expression Ly = y" and the boundary
condition function A defined as

A(x) = ,
] if x = 0 ,

x/[l + log(l + x)]l ^

We have Q(x) = ΓQ JΊ for x ^ 0, M(x, t) = ί J X^t~\ for all numbers

x and t and if % is a positive integer,

So, l im*^ Γw = / = I Q - I and π = i 2 L A is a determinate bound-

ary condition function for Q on c19 c2, and KA is calculated by

equation (2).

Let H(x) = i//i . 2\ a? ̂  0 H is in A since the function Y de-

fined by

fx arctan x - log + (laf)1/2 + (π/2)x - 1

arctan x + π/2r « = Lί

for x ^ 0 is a solution of the singular boundary value problem with

S CO

dt{π — I)Mφ,t)H{t) exists so H is
o

S oo

dt KA(x, t)H(t) exists for each x ^ 0. The function X
o

defined by X(x) = [° dt KA(x, t)H(t) for x ^ 0 does not satisfy the
Jo

asymptotic boundary condition and so H is in A Π A but not in the
domain of RA.

It remains to more completely describe how the domain of RA

depends upon the problem and to investigate the complex numbers λ
for which one obtains an inverting operator R(A, θ, λ) for the singular
boundary value problem

[ Y' - (Q + XΘ)Y= H

A(0)Γ(0) + limA(c l l)Γ(cβ) = 0

where θ denotes a function from [0, oo) into B.
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