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We shall establish necessary and sufficient conditions, in
terms of Green lines, for a point of the Kuramόchi boundary
Γk of a hyperbolic Riemann surface R to be of positive har-
monic measure.

Explicitly, let 93 be the bundle of all Green lines I issuing
from a fixed point of R. It forms a measure space with the
Green measure. We call a subset tί of S a distinguished
bundle if it has positive measure and there exists a point p
in Γk such that almost every I in % terminates at p. The
point p will be referred to as the end of 21.

Our main result is that a point p of Γk has positive
measure if and only if there exists a distinguished bundle %
whose end is p.

We shall also give an intrinsic characterization of the
latter property, without reference to points of Γk: A bundle
% is distinguished if and only if it has positive measure and
for every HD-function u there exists a real number cu such
that u has the limit cu along almost every I in -St.

1* Green lines

1* Let R be a hyperbolic Riemann surface, the hyperbolicity

characterized by the existence of Green's functions. Fix a point zQ e R

and denote by g(z) = g(z, z0) the Green's function on R with singularity

zQ. Consider the differential equations

( 1 )

( 2 ) dθ(z) = -*dg(z) .

Equation (1) has the unique solution r(z) = e~9W on R with 0 ^ r(z) < 1.

In any simply connected subregion of R — zQ where dg(z) Φ 0, equation

(2) also has a solution θ(z), unique up to an additive constant. The

global solution θ(z)1 however, is a multivalued harmonic function.

Set Gp = {zeR\r(z) < ρ},Cp = dGp(0 < p < 1). For a sufficiently

small |0, the analytic function w = φ(z) — r(z)eίθ{z) is single-valued and

gives a univalent conformal mapping of Gp onto the disk \w\ < p.

Denote by p0 the supremum of all p with this property.

2* An open arc a is called a Green arc if dg(z) Φ 0 for all zea,
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and a branch of θ is constant on a. The set of Green arcs is par-
tially ordered by inclusion. A maximal Green arc in this partially
ordered set is called a Green line.

A Green line I is said to issue from z0 if z0 e T. We denote by
33 the set of Green lines issuing from z0 and use the suggestive term
bundle for a subset §1 of 33, with the case §1 = 33 not excluded.

For a fixed p e (0, p0) and a given peCp let l(p) be the Green
line in S3 passing through p. Making use of the function w = φ{z) =
r(z)eiθ{z) we see that the mapping p —• l(p) is bijective; let p(Z) be the
inverse mapping. We call a bundle 2ίc33 measurable if p(2I) is
measurable in Cp, and define the Green measure of 21 by

(3) m(Sί) - -L( dθ(z) = ~ \ *dg{z) *

The space (S3, m) is a probability space, i.e., a measure space of total
measure unity. The definition is independent of the choice of p e (0, p0).

3* Fix an i e 33. The number a(l) — supzeZr(2) is in (0,1]. If
a(l) < 1, then ϊ terminates at a point of R at which dg = 0. Such
an i is called singular. If α(ί) = 1, then I tends to the ideal boundary
of R and is called regular. The bundle 33r of regular Green lines
"almost" comprises 33, that is, m(33r) = 1. This is a result of Brelot-
Choquet [1] (cf. [7], [8]).

2* Compactifications*

4* Let Rc be a compactification of R, i.e., a compact Hausdorff
space containing R as its open dense subspace. For a bounded con-
tinuous function φ on the ideal boundary Γc = Rc — R of R, denote
by Uf the class of superharmonic functions s on R such that

lim inf s(z) Ξ>
zeR,z-*p

for every p € Γ\ The function

) = i n f

is harmonic on R. We assume that Rc is a resolutive compactification
(cf. Constantinescu-Cornea [2]), that is, φ-+HφC(z) is a continuous
linear functional. Then for zQ e R there exists a measure μ% called
the harmonic measure on Γ% and a function Pc(z, p) on R x .Γc with
properties P,(so» p) = 1,

( 4 ) I f f (s) = I Pe(z, p)φ{p)dμc{p) ,
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This representation extends to bounded Borel measurable functions φ
on Γc.

Let HD(R) be the class of harmonic functions u ^ 0 on R such
that there exists a decreasing sequence {un} c HD(R) with u = limπ un

on R. A function u e HD{R) is said to be HD-minimal if for every

v e HD(R) with v S u on R there exists a constant cv such that v = c,w

on JK. We shall call the compactification Rc HD-compatϊble if the

following condition is satisfied: u e HD(R) is £ΓD-minimal if and only

if there exists a point pQ e Γc with μc(p0) > 0 and a number k > 0

such that

(5) u(z) = k\ Pc(z, p)dμ%p) .

5* The Royden compactification 22* of R, with the Royden

boundary Γ = R* — R, is a typical example of an i£Z?-compatible

compactification (see [6], [8]). We let μ and P stand for μc and Pe

corresponding to iϋ*.
A compactification Rc is said to lie below iϋ* if there exists a

continuous mapping π = πc of iϋ* onto iϋc such that τr|i? is the identity
and π~~ι(R) = i2. Clearly π is unique and we have

( 6 ) \rcP
c(z, p)φ(p)dμ<(p) = \p(z, p*)φ(π(p*))dμ(p*)

for every bounded Borel function φ on Γc.

6* We are interested in the behavior of leSBr in R\ We set

( 7 ) ec(l)= Γ ' - Z U K } ,

with ϊc the closure of I in i2c, and call ec(l) the eτιd pαrί of I in i2c

It is a compact set in Γ\ If

S5C = {Z G S5r [ ec(Z) is a single point}

is of measure m(93c) = 1, then we call Rc Green-compatible.
We shall make use of a result of Maeda [4]: A metrizable com-

pactification Rc which lies below 72* is Green-compatible.

7. A compactification Rc of R is said to be of type G if Rc is

metrizable, iJZ)-compatible, and lies below J?*. Note that Rc is then

Green-compatible. An important example:

PROPOSITION. The Kuramochi compactification Rk of R is of type G.

In fact, metrizability and iίD-compatibility of Rk are immediate
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consequences of related results of Constantinescu-Cornea [2, pp. 171
and 169], That Rk lies below iϋ* follows from the definition of the
Kuramochi compactiίication given in [2, p. 167].

Rk is actually the only significant compactification of type G known
thus far. For a general discussion of its properties we also refer to [5].

3* Distinguished bundles*

8* Let Rc be a compactification of R of type G. We call a
bundle 2Ic33 Rc-distinguished if m(2I) > 0 and there exists a point
p e Γc such that ec(l) = p for almost every I e St. The point p will be
referred to as the end of 21. In the case Rc — Rk we simply say that
21 is distinguished.

We shall characterize points pe Γc of positive measure in terms
of ^-distinguished bundles:

THEOREM. Let Rc he a compactification of type G of a hyperbolic
Riemann surface R. A point p e Γc = Rc — R has positive harmonic
measure if and only if there exists an Rc-distinguished bundle Sί
with end p.

The proof will be given in 9-13.

9. Let Γ = R* -_R be the Royden boundary of R. For I e S r

denote by e(l) the set T — l\j{z0} in Γ, with I the closure of I in R*.
Given a subset SaΓ we write

<8) S= {le®\e(l)nSφ 0 } , S = {le

We shall employ the following auxiliary result ([7], [8]): For every
i^σ-set K (resp. G -̂set U) in Γ

(9) m(K)^μ(K)y m(U) ^ μ(U) ,

where m and m are the outer and inner measures induced by m.
Let p* be on the Royden harmonic boundary A of R, The set

Λp* - {g* € Γ\u(q*) = w(p*) for all ueHBD(R)}

is called a &Z00Λ; at 3)*. It is known ([7], [8]) that it has a measurable Λp*9

(10) m(Λp.) - /i(p*) ,

and that

(11) u(p*)= lim w(a)

for every % e HD(R) and almost every I e Λp*.
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10* Suppose SI is an undistinguished bundle with end p e Γ\
We are to prove that μc(p) > 0. Take the projection π = πc of ϋϊ*
onto Rc (see 5). The set K= n"\p) is compact and clearly 3tcJ5Γ
By (9),

0 < m(SI) ^ m{K) ̂  μ{K) .

From (6) it follows that μ{K) = μ(π~ι(p)) = πc(p). Therefore

0 < m(2ΐ)

l l Conversely suppose that pe Γc and μc(p) > 0. Since iϋc is

JΪD-compatible, the function u{z) = \ Pc{z, q)dμc(q) is ίiΓjD-minimal on

R. By (6) we see that

(12) u(z) = ί P(z,

Since i2* is also Jϊi)-compatible and the integral representation (12)

of the UD-function u is unique up to a boundary function vanishing
/^-almost everywhere on Γ ([6], [8]), we conclude that there exists a
point p* G π~ι(p) with μ(p*) = μ{π~\p)) > 0. Observe that

(13) m(Λ~ *) = /ι(p ) > 0 .

In view of the Green-compatibility of R% there exists a measur-
able subset Sic Λp* with m(Λp*) = m(Sί) and such that βc(ϊ) is a single
point in Γc for each I e SI.

To conclude that SI is an ̂ -distinguished bundle with end p, we
must show that SI' = {I e SI | ec(l) Φ p) is of m-measure zero. For this
purpose take a sequence {Un}? of open sets in Γc with

Un+1czUn+1^Un, Π Un={p}.
1

Let Wn= {leW\ec(l)(ίUn}. Since 2Γ=U?=i3r;, it suffices to show
that m(SÎ ) = 0 for every n.

12. First we assume that R&OHD. For an arbitrarily fixed n
there exists & une HBD(R) such that

(14) 0 ̂  un\Δ ̂  1, w J π - X t ω r U = 1, ̂ | (zί - π~\Un)) = 0 .

In view of (11), there exists a measurable subset SI"cSI^ with
m(Wn - St;') - 0 and

(15) 1 = un(p*) = lim un(z)
zel,r(z)-+l

for every leWJ. The set En = {g* e Γ | wn(g*) < J} is open in 1\ By
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(15), e(l)f)En = 0 for every leWJ. Because of the definition of 3i;,
it is also clear that e(l) Π π~ι( Un) = 0 for every I e SDCίΓ Since the set
Kn= Γ - π~ι(Un){jEn is compact and π-ι(Un)\jEn-DA, we have iΓwc
Γ — A and a fortiori μ(iQ = 0.

On the other hand, e(ΐ)czKn for every leWJ. Therefore St ' c

KndKn. In view of (9), we obtain

and conclude that m(Wn) = m($%) = 0.

13* If R e OHD, then J consists of a single point and consequently
A = {p*}. The set Fn= Γ — π~ι(Un) is compact in /"* — J and hence
μ(Fn) = 0. By the definition of Si; we have WnczFnc:Fn. Therefore
m{Wn) ̂  m(Fn) ^ ^(F%) = 0. The proof of Theorem 8 is herewith
complete.

4> Characterization of distinguished bundles*

14* We next give necessary and sufficient conditions for a bundle
to be distinguished, without referring to its end:

THEOREM. Let Rc be a compactification of type G of a hyperbolic
Riemann surface R. A hundle 31 c S3 is Rc-distinguished if and only
if m{%) > 0 and for each u e HD{R) there exists a number cu such
that

(16) lim u(z) = cu
zel,r(z)-*l

for almost every I e Si.

The proof will be given in 15-18.

15* First suppose SI is ^-distinguished with end peΓc. Then
by 10 and 11, there exists a point p* e K = π~\p) such that

0 < μc(p) = μ{K) = μ(p*) .

Fix a ueHD(R). By the Godefroid theorem [3] (see also [7], [8]),

(17) u(l) = lim u(z)
ze l,r(z)->l

exists for almost every le$8r. On omiting from Si a set of measure
zero we may assume that u(l) in (17) exists for every I e 31. We may
also suppose that ec(l) = p and a fortiori e(l)aK for every ZeSC.

Since μ(p*).>0, \u(p*)\ < <*> (cf. [6], [8]). Let

W ={le%\u{l) -
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and

Kn = {q* e K\ I u(q*) - u(p*) \ ̂  1/n) .

Clearly Kn is a compact set. For I e Si' and q* e e(l), we have u(l) —
u(q*) by (17) and the continuity of u on R*. Therefore | u(q*) — u(p*) | ̂
1/n for some n and a fortiori e(l)aKn. It follows that

which by (9) gives

m(Sί') ̂  m(U Kn) ^ Σ * ( ^ ) ̂  Σ μ(K*)

From KncK-p* and μ{K) = μ{p*), we obtain μ( lQ = 0. Con-
sequently m(SI') = 0 and, since

lim u(z) = u(l)
2ei,r(2)-»l

for every I e St — 2Γ, we have (16) for almost every Z 6 21.

16* Conversely suppose that, for a bundle SIcS3 with m(Sί) > 0,
(16) is satisfied. We may assume that ec(l) is a single point in Γe

for every ZeSI.
First consider the case R e OHD. The harmonic boundary Δ con-

sists of a single point p* and μ(p*) > 0._ Let p = ττ(p*). Take a
sequence {Z7»}Γ of open sets in Γc such that Un+1(Z Un and ΠΓ Un = {p}.
For the bundles K = {Z e SI | βc(ί) i Un), n = 1, 2, . , and

we have SI' = \J?%'n. Set Kn= Γ - π~\Un)(zΓ - Δ. Every Ie Wn

has e(Γ)czKn and we obtain WnaKnciKn. Hence

m(Wn) £ m{Kn) <ς μ(Kn) = 0

and therefore m(Sί') = 0, i.e., ec(l) = p for almost every ZeSI. This
proves that Si is ^-distinguished.

17* Next suppose RgOHD. The family

Γ(SI) = {u e HBD(R) \ 0 ^ u ^ l on R, u(l) = 1 for almost every I e Si}

is a Perron family and

(18) 8(z) = m£{u(z)\ueT(%)}

is an -ffjD-minimal function on R (see [7], [8]). We can therefore
choose a decreasing sequence {hn}dT(^ί) such that
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(19) s(z) = lim* hn(z)

on R. Let 2I0 be a measurables subset of 21 with m(2ΐ) = m(2I0) such
that hn(l) exists and equals unity for every n — 1, 2, • ••, and^every
I e 2t0. We set

s(l) = lim sup s(z)
ze l,r{z)-*i

and observe that

φ 0 ) = \ s(reiι)dm(l) rg ( hn(reiι)dm(l) = hn{zQ)

for every r e (0,1) (see [7], [8]). By Fatou's lemma

s(z0) ^ ( s(l)dm(l) ^ ί hn(l)dm(l) = hn(z0) .

Let fc(ί) = lim% few(i). Since fen(Z) ^ s(ί) and

0 ^ ( (h{l) - s(l))dm(l) ^ lim (hn(zQ) - s(z0)) - 0 ,

we conclude that s(l) — h(l) almost everywhere on 33. In view of
h(l) = 1 for every I e 2I0 we may suppose that

(20) 8(1) = 1 (I e 21) .

18* The remainder of the proof is analogous to that in 11-12.

In fact, since s is ίϊD-minimal, there exist points p and p* in Γc and

Γ respectively such that μc(p) = ^(^*) > 0, p* e π™1^), and

^, q)dμc(q) - ί P(«, g*

We wish to show that ec(l) — p for almost every £ e 21, that is, 21 is
undistinguished with end p. For this purpose set 2ΐ' = {I e 2I|ec(£) Φ p}.
To see that m(2Γ) = 0 take a sequence {ί7w} of open sets in Γc such
that

For 2i; - {Ie%\ec(l) £ Un} we have 21' - \J? K and it suffices to show
that m(Wn) = 0 for every n= 1, 2, . Take a function un e HBD(R)
with

0 ^ wJJ ^ 1, un\π-\Un+1)f)Λ - 1, wJ(J - π~\Un)) = 0 .

We may suppose un(l) exists for every I e 21. Since 1 ^ un ^ s on R,
(20) implies that

(21) un(l) - 1 (i G 2ί) .
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Clearly e(ΐ)<zΓ — π~ι(Un) for every leWn. Moreover, if we set En =
{q*eΓ\ un(q*) < i}, then e(l)aΓ - En{jπ~ι{Un) - Kn for every I e Wn.
Since Kn is compact and contained in Γ — A,

implies that

m(Wn) ^ m{Kn) = μ(Kn) - 0 .

The proof of Theorem 14 is herewith complete.

5* Conclusion*

19* Recall that a bundle 2ίc35 is distinguished with end p on
the Kuramochi boundary if m(3I) > 0 and almost every Green line in
21 terminates at p. Since the Kuramochi compactification is of type
G, Theorems 8 and 14 imply:

THEOREM. A point p of the Kuramochί boundary of a hyperbolic
Riemann surface R has positive measure if and only if there exists
a distinguished bundle 91 of Green lines with end p.

A bundle 31 of Green lines ivith m(3ί) > 0 is distinguished if and
only if for every ue HD(R), there exists a number cu such that the
"radial limit" lim,eZ,r(z)_1 u(z) exists and equals cu for almot every I e 2ΐ.
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