Pacific Journal of Mathematics

COMPLETIONS OF DEDEKIND PRIME RINGS AS SECOND ENDOMORPHISM RINGS

JAMES J. KUZMANOVICH

Vol. 36, No. 3

BadMonth 1971

COMPLETIONS OF DEDEKIND PRIME RINGS AS SECOND ENDOMORPHISM RINGS

JAMES KUZMANOVICH

The purpose of this paper is to show that if M is a maximal two-sided ideal of a Dedekind prime ring R and P is any maximal right ideal containing M, then the M-adic completion \overline{R} of R can be realized as the second endomorphism ring of E=E(R/P), the R-injective hull of R/P; that is, as end ($_{K}E$) where K= end (E_{R}). The ring K turns out to be a complete, local, principal ideal domain.

This paper was motivated by a result of Matlis [6] which says that if P is a prime ideal of a commutative Noetherian ring R, then the P-adic completion of the localization of Rat P can be realized as the ring of endomorphisms of E=E(R/P), the R-injective hull of R/P.

Since \overline{R} is a full matrix ring over a complete local domain L [4], we are able to approach the problem by considering first the case that R is a complete local domain, then by means of the Morita theorems we pass to the case $\overline{R}=R$, and finally pass to the general case.

1. Introduction. A prime ring R is called a Dedekind prime ring if it is Noetherian, hereditary, and a maximal order in its classical quotient ring Q (see [3]). A ring R is called local if the nonunits of R form an ideal.

If R is a Dedekind prime ring with a nonzero prime ideal M, then M is a maximal two-sided ideal and $\cap M^n = 0$ (see Robson [7]). Let $\overline{R} = \overline{R}_M$ be the completion of R at M in the sense of Goldie [3]. In this situation combining results of Goldie ([3], Theorem 4.5) and Gwynne and Robson ([4], Theorem 2.3) yields the following theorem.

THEOREM 1.1. Let R be a Dedekind prime ring with a maximal ideal M. Then (i) \overline{R} has a unique maximal two-sided ideal \overline{M} , \overline{M} is the Jacobson radical of \overline{R} , and $R \cap \overline{M}^p = M^p$.

(ii) \overline{R} is a full $k \times k$ matrix ring over a domain L which has a unique maximal ideal N, and L/N = F where F is a division ring. Also $R/M^{p} \simeq \overline{R}/\overline{M}^{p}$ (each coset of \overline{M}^{p} has a representative in R).

(iii) \overline{R} is a prime principal ideal ring and L is a complete, local, principal ideal domain. The only one-sided ideals of L are the powers of N.

For the rest of this section let R, M, \overline{R} , \overline{M} , L, and N be as in Theorem 1.1. Let x be the generator of N; then N = xL = Lx and $N^k = x^kL = Lx^k$.

2. The Ring L. This section will be concerned with the construction of the *L*-injective hull of $(L/N)_L$ and with showing that Theorem 4.4 holds for *L*.

LEMMA 2.1. L/N^k can be embedded in L/N^{k+1} as a right L-module via the map $h_k: L/N^k \rightarrow L/N^{k+1}$ defined by h_k $([u + N^k]) = [xu + N^{k+1}]$.

Proof. h_k is clearly additive and right L-linear. Suppose $h_k([u + N^k]) = [0 + N^{k+1}]$. From the definition of h_k it follows that $xu \in N^{k+1}$ so that $xu = x^{k+1}u$, for some u' in L and $u = x^ku' \in N^k$. Hence $[u + N^k] = [0 + N^k]$ and n_k is a monomorphism. A similar argument shows that h_k is well-defined.

The maps $\{h_k\}$ and the right *L*-modules $\{(L/N^k)_L\}$ give rise to a directed system. Let E_L be the direct limit of this system. Then E_L can be considered as an ascending union of a family of submodules, $\{(S_j)_L\}$, which is totally ordered by inclusion and where each $(S_j)_L$ is isomorphic to $(L/N^i)_L$.

LEMMA 2.2. Consider $(L/N^{p+t+1})_L$. Take $a \in N^p/N^{p+t+1}$ and $d \in N^p \setminus N^{p+1}$. The equation yd = a has a solution in $(L/N^{p+t+1})_L$.

Proof. $a \in N^p/N^{p+t+1}$ so that $a = [x^pv + N^{p+t+1}]$. $d \in N^p \setminus N^{p+1}$ so that $d = x^p u$ where u is a unit in L. In L, $x^p v u^{-1} = w x^p$ since

$$egin{aligned} N^p &= x^p L = L x^p. & ext{Let } y = [w + N^{p+t+1}]. \ yd \ &= [w + N^{p+t+1}]d = [wd + N^{p+t+1}] = [wx^p u + N^{p+t+1}] \ &= [x^p v u^{-1} u + N^{p+t+1}] = [x^p v N^{p+t+1}] = a. \end{aligned}$$

PROPOSITION 2.3. E_L is isomorphic to the L-injective hull of the simple right L-module $(L/N)_L$.

Proof. E_L contains a copy of $(L/N)_L$, namely S_1 . Thus it is enough to show that E is an essential injective extension of S_1 . S_1 is essential in E for if $a \in E$, $a \in S_k$ for some integer k. Let t be the first such integer: then $a \in S_t \setminus S_{t-1}$, a is a generator for S_t , and $aL = S_t$. Thus $aL \cap S_1 = S_1$ and S_1 is essential. Since L is a principal ideal domain, it is a hereditary two-sided order in its quotient division ring. In order to prove E_L is injective it is sufficient by a result of Levy ([5], Theorem 3.4) to show that it is L-divisible. Take $a \in E$ and $0 \neq d \in L$. $a \in S_t$ for some t and $d \in N^p \setminus N^{p+1}$ for some p. yd = a has a solution in S_{p+t+1} , and hence in *E*, by Lemma 2.2. *E* is thus an essential injective extension of S_1 and hence is its injective hull.

Let $K = \operatorname{end}_{L}(E)$ and let K act on E by left multiplication; E then becomes a left K-module. Let $H = \operatorname{end}_{K}(E)$; in similar manner E then becomes a right H-module. Ed = E (since E is L-divisible) for all nonzero d in L; thus E is a faithful right L-module. Hence L may be considered as a unital subring of H.

LEMMA 2.4. The S_k 's are the only proper L-submodules of E_L .

Proof. Suppose M_L is a submodule of E with generating set $\{m_i\}$. Since $E = \bigcup S_k$, each m_i is in some S_k . Let k_i be the first k for which $m_i \in S_k$. Then $m_i \in S_{k_i} \setminus S_{k_i-1}$ and $m_i L = S_{k_i}$. $M = \Sigma m_i L = \Sigma S_{k_i}$ so that if $\{k_i\}$ is bounded, $M = S_{k_i}$ where $k_i = \max \{k_i\}$, and if $\{k_i\}$ is not bounded, then $M = E_L$.

LEMMA 2.5. If $a \in S_n$ and if $b \in S_{n-1}$, then there is a $q \in K$ such that q(b) = a.

Proof. Assume that t is the first integer for which $b \in S_{n+t}$. Then $\operatorname{ann}_L(b) = N^{n+t}$ which is contained in N^n which in turn is contained in $\operatorname{ann}_L(a)$. Thus the map $\overline{q}: bL \to aL$ defined by $\overline{q}(bd) = ad$ is well defined. E_L is L-injective so that \overline{q} can be extended to an endomorphism q of E. $q \in K$.

PROPOSITION 2.6. Each S_n is a cyclic left K-submodule of $_{\kappa}E$, the composition length of $_{\kappa}(S_n)$ is n, and the S_n 's are the only proper K-submodules of E.

Proof. If $q \in K, q(S_n)$ is an L-submodule of E of composition length less than or equal to n and hence must be contained in S_n by Lemma 2.4; hence each S_n is a left K-submodule. Each $_{\kappa}(S_n)$ is cyclic via Lemma 2.5; in fact, any L generator of S_n will be a K generator of S_n . This implies that $_{\kappa}(S_1)$ is simple and inductively that the composition length of $_{\kappa}(S_n)$ is n. The proof of Lemma 2.4 shows that these are the only K-submodules of E.

LEMMA 2.7. Let H_i be the annihilator of S_i in H. Then H_i is a two-sided ideal of H, H_{i+1} is properly contained in H_i , and $\cap H_i = 0$.

Proof. H_i is clearly a right ideal of H. If $h \in H$, then $(S_i)h$ is a K-submodule of E of composition length less than or equal to i. By Proposition 2.6 it must be that $(S_i)h \subset S_i$ so that each S_i is H-invariant. As a result H_i is a left ideal and hence an ideal. The inclusions are

proper, for $H_i \cap L = N^i$ and $N_i \neq N^{i+1}$. Since $E = \bigcup S_i$, anything in $\cap H_i$ would annihilate all of E and hence be zero.

PROPOSITION 2.8. H = L. That is, L is the second endomorphism ring of E_L .

Proof. Take $f \in H$. By Proposition 2.6 there is a nonzero $y \in S_1$ such that $S_1 = Ky = yL$. Hence there is a $p_1 \in L$ such that $yf = yp_1$. Also, if $z \in S_1$, z = ky for some $k \in K$ and

$$z(f - p_1) = (ky) (f - p_1) = k0 = 0$$
. Hence $f - p_1 \in \operatorname{ann}_H(S_1) = H_1$.

Inductively suppose that there is a $p_i \in L$ such that $f - p_i \in H_i$. Now take $y \in S_{i+1} \setminus S_i$. $y(f - p_i) \in S_{i+1}$ so that there is a $d \in L$ such that $y(f - p_i) = yd$. If $z \in S_{i+1}$, z = ky for some $k \in K$. Then $z(f - p_i) = (ky)(f - p_i) = k(y(f - p_i) = k(yd) = (ky)d = zd$ and hence $f - p_i - d$ is in H_{i+1} . Let $p_{i+1} = p_i + d$; then $f - p_{i+1} \in H_{i+1}$.

The sequence $\{p_i\}$ is Cauchy in L, for $p_n - p_m = (p_n - f) + (f - p_m)$ an element of $H_n + H_m$; but $H_n + H_m = H_n$ if $n \leq m$. Thus $p_n = p_m$ is in $H_n \cap L = N^n$. L is complete; therefore $\{p_i\}$ converges to some element p of L. It only remains to be shown that p = f. Take $z \in E$; $z \in S_n$ for some n. $\{p_i\}$ converges to p so that there is a positive integer M such that $p_m - p \in N^n$ for all m greater than M. Take m greater than M + n. $zf = zp_m = zp$. z was arbitrary; therefore f = p.

3. The Ring K. In this section it will be shown that K is a complete, local, principal ideal domain.

LEMMA 3.1. Let L, E, and K be as in §2. Let J denote the Jacobson radical of K and let $A_n = \operatorname{ann}_{\mathbb{K}}(S_n)$. Then

- (i) K is a local domain.
- (ii) $J = A_1, J^n \subset A_n \cap A_n = 0, and \cap J^n = 0.$
- (iii) K is complete in the topology induced by the A_n 's.

Proof. (i) K is local since it is the endomorphism ring of an indecomposable injective module. To prove that K is a domain it is sufficient to show that every nonzero endomorphism of E_L is an epimorphism. Let $0 \neq k \in K$. If $k(E) \neq E$, $k(E) = S_n$ for some n by Lemma 2.4. $\operatorname{Ann}_L(S_n) = N^n$; take $0 \neq b \in N^n$. Since E is L-divisible, Eb = E. As a result $S_n = k(E) = k(Eb) = k(E)b = S_nb = 0$ contradicting the fact that $k \neq 0$.

(ii) The radical of K, J, is the set of all endomorphisms of E_L whose kernel is essential (see [2], page 44). Since $(S_1)_L$ is the unique minimal submodule of E, ker(k) is essential if and only if $k(S_1) = 0$;

therefore $J = A_1$ and $JS_1 = 0$. Inductively suppose that $J^{n-1}S_{n-1} = 0$. $JS_n \subset S_{n-1}$ since it is contained in the radical of $K(S_n)$, S_{n-1} . Hence $J^n s_n = J^{n-1}(Js_n)$ which is contained in $J^{n-1}S_{n-1}$ which is zero, hence $J^n \subset A_n \cap A_n = 0$ since anything in $\cap A_n$ would annihilate all of the S_n 's and hence all of E. $\cap J^n = 0$ since $J^n \subset A_n$.

(iii) Let $\{f_i\}$ be a Cauchy sequence in K with respect to the topology induced by the decreasing family $\{A_n\}$. Let $x \in E$. $x \in S_p$ for some p. Since $\{f_i\}$ is Cauchy, there is an integer M such that $f_n - f_m \in A_p$ for n, m greater than M. Define $f(x) = f_{M+1}(x)$. It is clear that $f \in K$ and that $f_i \to f$ by the nature of the construction.

Pick $j \in J \setminus A_2$. There is such a j, for if $y_2 \in S_2 \setminus S_1$ and if $0 \neq y_1 \in S_1$, then there is a $j \in K$ such that $j(y_2) = y_1$ by Lemma 2.5. $j \in J \setminus A_2$. In fact if $s \in S_{n+1} \setminus S_n$, then $j^n s$ is a nonzero element of S_1 . The proof is by induction. If $s \in S_2 \setminus S_1$, then $s = y_2 u$ for u a unit in L. Hence $js = jy_2 u = y_1 u \neq 0$. Inductively suppose that $j^{n-1}s$ is nonzero for all s in $S_n \setminus S_{n-1}$ and take $s \in S_{n+1} \setminus S_n$. $js \in S_n$ by an argument in the previous proof. The claim is that $js \notin S_{n-1}$. If it were, then $j^{n-1}s = 0$ which contradicts the induction hypothesis since $sd \in S_n \setminus S_{n-1}$ for some d in L. Hence $js \notin S_{n-1}$ so again by the induction hypothesis $j^n s =$ $j^{n-1}(js) \neq 0$.

LEMMA 3.2. Let K, J, j, E, and L be as above. (i) J = jK. (ii) J = Kj. (iii) $J^n = j^n K = Kj^n$.

Proof. (i) Let $x \in J$. Let $y_2 \in S_2 \setminus S_1$. $x(y_2) = y \in S_1$ since $x \in J$. Let $j(y_2) = y_1$; y_1 is a nonzero element of S_1 since $j \in J \setminus A_2$. Then there is an element d in L such that $y = y_1 d = j(y_2)d = j(y_2d)$. By Lemma 2.5 there exists $k_1 \in K$ such that $k_1(y_2) = y_2d$. If $s \in S_2$, then $s = y_2c$ for some c in L. $x(s) = x(y_2c) = X(y_2)c = uc = (jk_1(y_2))c = jk_1(y_2c) = jk_1(s)$. This says that $x - jk_1 \in A_2$.

Inductively suppose that there exist k_1, \dots, k_{n-1} such that

$$z = x - (jk_1 + j^2k_2 + \cdots + j^{n-1}k_{n-1}) \in A_n$$
. If
 $y_{n+1} \in S_{n+1} \setminus S_n$, then $j^n(y_{n+1}) = y_1$

a nonzero element of S_1 by the above choice of j. Also $z(y_{n+1}) \in S_1$ since $z \in A_n$. Hence by the argument above there is a $k_n \in K$ such that $z - j^n k_n \in A_{n+1}$. The sequence $\{jk_1 + \cdots + j^n k_n\}$ converges to xin the A_n topology by the nature of the construction. Also, since $J^n \subset A_n$ the sequence $\{k_1 + \cdots + j^{n-1}k_n\}$ is Cauchy and hence by the completeness of K converges to some element k of K. Also by the construction jk = x. Since x was arbitrary in J, J = jk.

(ii) is proven by an argument similar to that of (i).

(iii) J = jK = Kj by (i) and (ii). Inductively suppose that $J^n = j^n K = Kj^n$. Then $J^{n+1} = J^n J = (j^n K)(jK) = j^n (Kj)K = j^n (jK)K = j^{n+1}K$. Similarly $J^{n+1} = Kj^{n+1}$.

PROPOSITION 3.3. K as above.

(i) $J^n = A_n$ for all n.

(ii) J^n are the only one-sided ideals of K.

(iii) K is a complete principal ideal domain.

Proof. (i) $J = A_1$ by Lemma 3.1. Inductively suppose that $A_n = J^n$. $J^{n+1} \subset A_{n+1} \subset A_n = J^n$. $J^n/J^{n+1} = j^n K/j^{n+1}K \simeq K/jK = K/J$ which is simple. Therefore either $A_{n+1} = J^{n+1}$ or $A_{n+1} = J^n$. But by the induction hypothesis $j^n \notin A_{n+1}$ so that $A_{n+1} = J^{n+1}$.

(ii) It is sufficient to show that given $x \in K$, xK = K or that $xK = J^p$ for some p. Take $x \in K$ and suppose that $xK \neq K$, then x is not a unit and hence $x \in J^{p+1}$ for some p. By Lemma 3.1 $x = j^p k$, and k must be a unit; for otherwise $k = jk_1$ for some k_1 in K and $x = j^p jk_1 \in J^{p+1}$. As a result $xK = j^p kK = j^p K = J^p$. Similarly $Kx = J^p$.

(iii) K is a principal ideal domain by Lemma 3.2 and (ii). K is complete by (i) and Lemma 3.1.

4. The Ring R. Let R, M, \overline{R} , and L be as in Theorem 1.1. Then \overline{R} is the full $k \times k$ matrix ring over L. Let e_{ij} , $i, j = 1, 2, \dots, n$ be a complete set of matrix units for \overline{R} . Let M_L be a right L-module and let $M^* = M_1 \bigoplus \dots \bigoplus M_n$, a direct sum of n copies of M. Let f_1 be the identity map on M_1 , and let f_i , $i = 2, \dots, n$ be an isomorphism from M_1 to M_i . Then M^* can be made into an \overline{R} -module by defining $f_i(m)e_{ij} = f_j(m)$ and $f_i(m)e_{kj} = 0$ if $i \neq k$. "*" is a category isomorphism from the category of right L-modules to the category of right \overline{R} -modules. There is also a category isomorphism e_{11} from the category of right \overline{R} -modules to the category of right L-modules defined by $(A_R)e_{11} = Ae_{11}$. M and M^*e_{11} are isomorphic for any right L-module M (see [1], or [5] page 137).

PROPOSITION 4.1. \overline{R} is the second endomorphism ring of the \overline{R} injective hull of the simple right \overline{R} -module.

Proof. Let E be the *L*-injective hull of the simple right *L*-module as in §2. Then E^* is the \overline{R} -injective hull of a simple right \overline{R} -module since * is a category isomorphism. $\overline{R}/\overline{M}$ is simple Artinian and \overline{M} is the Jacobson radical of \overline{R} so there is only one isomorphism class of simple right- \overline{R} -modules. Let $K = \operatorname{end}_{\overline{R}}(E^*)$ and take $q \in K$. $q(E^*e_{ii}) = q(E^*_{ii}e_{ii}) = q(E^*e_{ii})e_{ii}$; thus each E^*e_{ii} is K-invariant and $_{\kappa}E^{*} = {}_{\kappa}F^{*}e_{11} \bigoplus {}_{\kappa}Ee_{22} \bigoplus \cdots \bigoplus {}_{\kappa}E^{*}e_{kk}$. Each e_{ij} is a K-isomorphism so that E^* is decomposed as a direct sum of k mutually isomorphic K-modules. Thus each K-endomorphism of E^* can be given by multiplication by a matrix of homomorphisms. The remainder of the proof shows that the entries in this matrix are of the desired forms. Each $q \in K$ restricted to E^*_{ii} is an L-endomorphism of E^*_{ii} . Each L-endomorphism of E^*e_{ii} can be extended in one and only one way to an \overline{R} -endomorphism of E^* ; namely, if \overline{q} is an L-endomorphism of E^*e_{ii} , then its unique extension q is defined by $q(z) = \sum_{i=1}^k \overline{q}(ze_{ii})e_{ii}$ for $z \in E^*$. Hence $K \simeq \operatorname{end}_{I}(E^*e_{ii})$ via the restriction map. By proposition 2.8 each element of $\operatorname{end}_{\kappa}(E^*e_{ii})$ can be given by right multiplication by an element of $e_{ii}\bar{R}e_{ii}$. If $h: E^*e_{ii} \to E^*e_{jj}$ is a K-homomorphism, then $h\bar{e}_{ii}$ is a K-endomorphism of E^*e_{ii} where \bar{e}_{ii} denotes right multiplication by e_{ji} . Hence $h\bar{e}_{ji} = \bar{e}_{ii}r\bar{e}_{ii}$ for some $r \in \bar{R}$. If $z \in E^*_{ii}$, then $(z)h = zhe_{jj} = zhe_{ji}e_{ij} = ze_{ii}re_{ii}e_{ij} = ze_{ii}re_{ij}$ so that h is given by right multiplication by an element of $e_{ii}\overline{R}e_{ij}$. As a result every Kendomorphism of E^* is given by right multiplication by an element of \overline{R} .

R can be considered as a subring of \overline{R} ; as a result every \overline{R} -module is automatically an R-module. Also, if \overline{M} is the maximal two-sided ideal of \overline{R} , then $\overline{M}^{p} \cap R = M^{p}$ and every coset of $\overline{R}/\overline{M}^{p}$ has a representative in R (Theorem 1.1).

LEMMA 4.2. E^* as in the proof of Proposition 4.1, then $(E^*)_R$ is the ascending union of \overline{R} -modules $0 \subset B_1 \subset B_2 \subset \cdots$ where the composition length of B_n is n. These are the only \overline{R} -submodules of E^* . Furthermore, the B_i 's are the only R-submodules of E^* and every R-endomorphism of E^* is an \overline{R} -endomorphism. That is, the structure of E^* as an R-module is identical to its structure as an \overline{R} -module.

Proof. The first part follows since it was true of E and * is a category isomorphism. Let $B_i = S_i^*$. A category isomorphism preserves the submodule lattice. Note that the composition length of $(B_n)_{\overline{R}}$ is n; since \overline{M} is the radical of \overline{R} , $B_n\overline{M}^n = 0$. In order to prove that the B_n 's are the only R-submodules of E^* it is sufficient to show that $aR = a\overline{R}$ for all $a \in E^*$. Take $a \in E^*$. Clearly $aR \subset a\overline{R}$. Take $\overline{r} \in \overline{R}$. $a \in B_n$ for some n so that $a\overline{M}^n = 0$. By theorem 1.1 there is an m in \overline{M}^n so that $\overline{r} + m = r \in R$, then $a\overline{r} = a\overline{r} + 0 = a\overline{r} + am = a(\overline{r} + m)ar$. Thus $a\overline{R} \subset aR$ and $a\overline{R} = aR$.

Let q be an R-endomorphism of E^* and take $a \in E^*$ and $\overline{r} \in \overline{R}$. It must be shown that $q(a\overline{r}) = q(a)\overline{r}$. Since $a \in E^*$, $a \in B_n$ for some n. The B_n 's are the only R-submodules of E^* and the composition length of B_n is n, so that $q(B_n) \subset B_n$ and $q(a) \in B_n$. As above there is an $m \in \overline{M}^n$ such that $\overline{r} + m = r \in R$. $B_n \overline{M}^n = 0$. Then

$$egin{aligned} q(aar{r}) &= q(aar{r}+0) = q(aar{r}+am) = q(a(ar{r}+m)) = q(ar) \ &= q(a)r = q(a)(ar{r}+m) = q(a)ar{r}+q(a)m \ &= q(a)ar{r}+0 = q(a)ar{r}$$
 .

Thus q is an \overline{R} -endomorphism.

LEMMA 4.3 E^* is the *R*-injective hull of $(B_1)_R$.

Proof. By Lemma 4.2 $(B_1)_R$ is an essential submodule of E^*_R . E^* is an injective \overline{R} -module since * is a category isomorphism; in particular E^* is a divisible \overline{R} -module so that E^* is a divisible Rmodule. R is a hereditary two-sided order so that E^* is an injective R-module by [5], Theorem 3.4.

THEOREM 4.4. Let R be a Dedekind prime ring with a maximal two-sided ideal M, and let P be a maximal right ideal of R containing M. Then the R-endomorphism ring of the R-injective hull of R/P is a complete principal ideal domain.

Proof. Let R, \overline{R} , L, E_L , and E^* be as above. Then by Lemma 4.3 E^* is the injective hull of a simple right R-module which is annihilated by M. $(B_1)_R \simeq R \setminus P$ since both are simple modules over the simple Artinian ring R/M; thus $E^* \simeq E(R/P)$. By Lemma 4.2 $\operatorname{end}_R(E^*) = \operatorname{end}_{\overline{R}}(E^*)$ which is isomorphic to $\operatorname{end}_L(E)$ since* is a category isomorphism. Hence the result follows by Proposition 3.3.

THEOREM 4.5. (Main Theorem) Let R be a Dedekind prime ring with a nonzero prime ideal M, and let P be a maximal right ideal containing M with E(R/P) the R-injective hull of R/P. Then \overline{R} , the completion of R at M, is isomorphic to the second endomorphism ring of E(R/P).

Proof. Consider E^* ; as above $E^* \simeq E(R/P)$. By Lemma 4.2 the R and \overline{R} structures of E^* are identical. Thus \overline{R} is second endomorphism ring of E(R/P) by Proposition 4.1.

References

^{1.} P. M. Cohn, Morita Equivalence and Duality, Queen Mary College, London.

^{2.} C. Faith, Lectures on Injective Modules and Quotient Rings, Springer-Verlag, Berlin, 1967.

^{3.} A. W. Goldie, Localization in non-commutative Noetherian rings, J. Algebra, 5 (1967), 89-105.

4. W. D. Gwynne and J. C. Robson, Completions of Non-Commutative Dedekind Prime Rings, Unpublished.

- 5. L. S. Levy, Torsion-free and divisible modules over non-integral Domains, Canadian J. Math., 15 (1963), 132-151.
- 6. E. Matlis, Injective modules over Noetherian rings, Pacific J. Math., 8 (1958), 511-528.
- 7. J. C. Robson, Non-commutative Dedekind rings, J. Algebra, 9 (1968), 249-265.

Received April 8, 1970.

UNIVERSITY OF WISCONSIN

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON Stanford University Stanford, California 94305 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS

University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. WOLE

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. **39**. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is \$8.00; single issues, \$3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues \$1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

C. R. Hobby

University of Washington Seattle, Washington 98105

Pacific Journal of Mathematics Vol. 36, No. 3 BadMonth, 1971

E. M. Alfsen and B. Hirsberg, <i>On dominated extensions in linear subspaces of</i> $\mathscr{C}_{C}(X)$	567
Joby Milo Anthony, <i>Topologies for quotient fields of commutative integral</i> domains	585
V. Balakrishnan, G. Sankaranarayanan and C. Suyambulingom, <i>Ordered cycle</i>	
lengths in a random permutation	603
Victor Allen Belfi, Nontangential homotopy equivalences	615
Jane Maxwell Day, Compact semigroups with square roots	623
Norman Henry Eggert, Jr., <i>Quasi regular groups of finite commutative nilpotent algebras</i>	631
Paul Erdős and Ernst Gabor Straus, <i>Some number theoretic results</i>	635
George Rudolph Gordh, Jr., <i>Monotone decompositions of irreducible Hausdorff</i>	
continua	647
Darald Joe Hartfiel, <i>The matrix equation</i> $AXB = X$	659
James Howard Hedlund, <i>Expansive automorphisms of Banach spaces</i> . II	671
I. Martin (Irving) Isaacs, <i>The p-parts of character degrees in p-solvable</i>	
groups	677
Donald Glen Johnson, <i>Rings of quotients of</i> Φ <i>-algebras</i>	693
Norman Lloyd Johnson, Transition planes constructed from semifield	
planes	701
Anne Bramble Searle Koehler, <i>Quasi-projective and quasi-injective</i>	
modules	713
James J. Kuzmanovich, <i>Completions of Dedekind prime rings as second</i>	
endomorphism rings	721
B. T. Y. Kwee, On generalized translated quasi-Cesàro summability	731
Yves A. Lequain, <i>Differential simplicity and complete integral closure</i>	741
Mordechai Lewin, <i>On nonnegative matrices</i>	753
Kevin Mor McCrimmon, <i>Speciality of quadratic Jordan algebras</i>	761
Hussain Sayid Nur, Singular perturbations of differential equations in abstract	
spaces	775
D. K. Oates, A non-compact Krein-Milman theorem	781
Lavon Barry Page, <i>Operators that commute with a unilateral shift on an</i>	
invariant subspace	787
Helga Schirmer, <i>Properties of fixed point sets on dendrites</i>	795
Saharon Shelah, On the number of non-almost isomorphic models of T in a	
	811
power	
<i>power</i> Robert Moffatt Stephenson Jr., <i>Minimal first countable Haus</i> dorff spaces	811 819
power	