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In a recent paper, Kisynski studied the solutions of the
abstract Cauchy problem ex(f) + 2 (¢) + Ax(t) =0, z(0) = o
and z°(0) = z; where 0 < ¢t < T, ¢ > 0 is small parameter and
A is a nonnegative self-adjoint operator in a Hilbert space
H. With the aid of the functional calculus of the operator
A, he has showed that as ¢ — 0 the solution of this problem
converges to the solution of the unperturbed Cauchy problem
2 (t) + Ax(t) = 0, x(0) =2x,. Smoller has proved the same
result for equation of higher order.

The purpose of this paper is to study the solution of a
similar problem and allowing the operator A to depend on ¢.

To be precise, we shall show that if the initial data is taken
from a suitable dense subset of H, then the solution of the Cauchy
problem:

(1.1) ex*(t) + x(t) + A@)z(t) = 0, 2(0) = x, x°(0) = x,
converges to the solution of the unperturbed Cauchy problem
(1.2) () + A(t)x(t) = 0, 2(0) = =,

as e—0 where 0<t< T, ¢>0 is a small parameter, A(f) is a
continuous semi-group of nonnegative self-adjoint operators in H with
infinitesimal generator A.

2. The problem (1.1) when H = R,. Before considering (1.1)
in the general case, it is necessary to consider (1.1) in the case
when H = R, (i.e., the real line). Thus we consider the Cauchy
problem:

2.1) eu(t) + u(t) + e*u(t) = 0. u(0) = x, u(0) =,

when t =0, £=0. ¢ > 0.
According to theorem (1) in [2], equation (2.1) has two linearly
independent solutions:

m—1

wo= S u, (O + "By, wi = S ui(t)e’ + e,
[ 0
m-—1 m—1

Uy = 3, U (t)Pe™ + em By, u; = 3, (djdt)[uy;(t)e e’ + em K,
0 0

75



776 HUSSAIN S. NUR

where u;;(t) (¢ = 1,2) are C~ functions on [0, T'] and u;(t) (2 =1, 2)
does not vanish at any point of [0, T'] and E,, E, are functions of ¢
and others, but bounded for small ¢ = 0.

Hence the general solution of equation (2.1) is u = cu, + cUs.
Solving for ¢, and ¢, by using the initial condition we obtain u =
ToSeo + 4,8n and w = 2,8, + 2,8, where

S0 = H()[ui(0)u(t) — ui(0)u.(t)]

sn = H(@u(0)us(t) — us(0)u,(0)]
(2.3) d
S10 = Sip = —Su
dt
Sy = S = —Su
dt
and

H(e) = u,(0)us(0) — uy(0)ui(0)
How taking the limit as ¢ — 0, we find that

Soolts € r“) —— Uy T)

2.4
24) Soi(t, &y ) — 0 .

Consequently, u(t, ¢) — xu,(t). From equation 15 in [2] we find that
u,(t) is the solution of the equation

(2.5) u + ety =0

and this is what we wished to show.

3. Estimates for the Functions s;,(t, & #). In this section we
would like to find estimates for the functions s;;(¢, ¢, ) (¢,7 =0, 1).
We may do so by solving for u;;(() :=1,2;5=0,1,---,m — 1)
from equation 15 in [2]. Since this would be rather tedious we will
take the simpler approach of estimating wu;(Z, ¢, ¢) and w(t, €, o)
(¢ =1, 2). Multiplying (2.1) by #- and integrating between 0 and ¢
we obtain:

cu?
2

t 2 1 t

+\ w4 Lot — = S uet =c.
So 2 2 #

Consequently

w=<2el + #Stuzef‘tdt .
0

Now using Bellman’s lemma, we obtain
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(3.1) w < 2fefe” .

For estimating u°(t), we multiply equation (2.1) by e *'u°, integrating
between 0 and ¢ and using Bellman’s lemma we obtain:

(3.2) w(t) < 27 efet .

In [2] page 323 we proved that for all small ¢ > 0 H(e) % 0, there-
‘fore we see that (2.3), (3.1), and (3.2) yield,

(3.3) [50] = K(e) exp ()

K(¢) is a bounded function in &, and
(3.4) |su| < K(e) exp (%)

K(s) is a bounded function in .
To obtain an estimate for s;; (4,5 = 1, 2) we write equation (2.1)

‘in amatrix form as:

U =AU

‘when

( : 1 )
A = ~ i I
—c'exp(pt)y —¢

Hence

U = exp [SA(S)(ZS] = (SOO Sm)
S Su

and from the equation

SOO SOJ.
(d/dt)( )

i

(seo sm\( 0 10
Sip 511) —é&exp (#t) - éx)

S, Su
@.5) ~( 0 1 )(sqo sm>
—&exp(ut) —&/\s, 8y
we obtain
(3.6) S = —Sue”' XD (1£)
(3.7) Sy = Sy — 78y «

4. The problem (1.1) in abstract Hilbert space. We shall
now consider the problem (1.1) in any Hilbert space H with
norm || - ||
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Since {A(t)} is a semi-group of a nonnegative selfadjoint operator
in H, with infinitesimal generator A, there is a resolution of the
identity E, such that A(¢) has the spectral representation:

A(t) = re”‘dE,, :

We shall next use the functional calculus of the operator A(t). For
fixed ¢ > 0, t = 0, we define the operator S;; on H by

(4.1 Sult, o) = | sult, <, 1dE, (i, = 0,1

where the s;,(t, ¢, 1) are defined by (2.3). If we let D denote the
dense domain of the operator e*® for all ¢, then our estimates (3.2)
through (3.7) imply that D is contained in the domain of S;(¢, ¢)
for every 4,5 = 0, 1.

For 2z, and z, in D, we write

(4.2) w.(t) = Sult, &), + Sult, &),

and we see that z.(t) is in the domain of A(¢) for every ¢ > 0. We:
now state the main theorem.

THEOREM. Let x.(t) be defined as in (4.2) when x, x, are in
D. Then x(t) is the unique solution of the Cauchy problem (1.1)
and x(t) converges to the solution of (1.2) as ¢ — 0.

To prove this theorem we first prove the following lemmas:

LEMMA 1. For xe D, (d/dt)S;(t, e)x exists and

(4.3) (d/dt)S:i(t, &) = r(d/dt)s”(t, e, dEx (1,5 =0,1) ..

Proof. We shall prove the lemma for 7 =7 = 0. Since the proofs.
for the other cases are similar, they will be omitted. For xe D and.
t = 0 fixed, we have:

S(t) X —S(t, ) i

” St + At e)

:§WW+M&W‘M““%&Ma4MWMP
Jo At ‘

= Isult e 1) = sult.e. )l ) By

where ¢t < ¢’ £ t + 4t, using the theorem of the mean and (2.3)..
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Now there is a T such that ¢ + 4t < T for all 4¢ sufficiently
small, so that if we use (8.8) through (3.7) we see that

[80(t) &, 1) — ity & )| S I8t & ) | + |80ty €5 1) |
< e—-leﬂTK(e)eu/z)eFT < N(S, T)ee/lT

where N(e, T) is a constant depending on 7' and ¢ only. Therefore
the function |s (¥, ¢, ¢t) — su(t, & ¢)* is summable with respect to
the measure d || E.x||* if 4t is sufficiently small. Furthermore,

lim [s10(t's &, 1) — su(t, &, #)]2 =0.
At -0

So that the Lebseque dominated convergence theorem yields:

lim | [s(t' &, 1) = sult, &, Pl By = 0 .
‘This completes the proof of the lemma.

LEMMA 2. For xeD and t = 0, we have

(4.4) lim
=0

|S00(t, e)x — exp (-—SA(S)dS)&o” =0
(4.5) 1513)1 || Sult, )zl =0.

Proof.
" Su(t, ) — exp <~ SA(s)ds) X ”2
!
From (3.3) we see that [sm(t, & ) — exp (— te’”ds i is summable with

respect to the measure d|| F.x|* and, as we have seen in (2.4) and
(2.5), the integrand converges pointwise to zero. We apply the
Lebesgue dominated convergence theorem to conclude that the integral
likewise converges to zero as ¢— 0. This proves (4.4). Relation
(4.5) follows from (2.4) and (2.5) likewise.

<so(,(t, &, ) — €xXp <—— Ste*‘*ds» '2d | Bl .

LEMMA 3. Let B be a bounded operator in H. If x*(t)+ Bx(t)=0,
0=t=0, and 2(0) = 0, then x(t) = 0.

The proof of the above lemma is in [3] and therefore will be
omitted.

The proof of the theorem. That x.(t) defined by (4.2) is a solu-
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tion of (1.1) follows at once from Lemma 1 by direct verification..
The uniqueness of z.(f) follows from Lemma 8 just as in [1]. Finally,.

since exp(—SZ‘l(.s)ols)x0 is the solution of (1.2) Lemma 2 shows that.

z.(t) — exp ( _ StA(s)ds>oc0 —0.

lim
e—0

This completes the proof of the theorem.
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