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If & is a property of topologies, a ^-space (X9^
r~) is

called a ^-minimal space if there exists no ^-topology on
X properly contained in ^ . Throughout the following,
3ίf — first countable and Hausdorff and ^ = first countable
and completely Hausdorff (a space X is called completely
Hausdorff if the continuous real valued functions defined on
X separate the points of X).

In this paper we give examples of Jg^-minimal ^-spaces
that are (i) not regular and (ii) regular but neither completely
regular nor countably compact.

Two other results obtained are the following, (a) Every
locally pseudocompact zero-dimensional ^g^-space can be
embedded densely in a pseudocompact zero-dimensional Sίf-
space, (b) Let & — ̂ , completely regular Jg^, or zero-
dimensional 3(f, and suppose that X is a & -space such that
for every & -space Yand continuous mapping f:X-> Y, f is
closed. Then X is countably compact.

N will denote the set of natural numbers, and C(X, Y) will
denote the family of continuous mappings of X into Y. For definitions,
see [4].

1» An embedding theorem and some examples* Recall that a
o

space (X, J7~) is said to be semiregular if {T\Tej^~} is a base for
^ 7 If (X, ̂ ~) has a property ^ , then (X, _$H is said to be &>-
closed provided that it is a closed subset of every & -space in which
it can be embedded.

For many properties ^ , it is known that ^-minimal and in-
closed spaces are closely connected. For the case & — £$f, the follow-
ing two results, established in [11], will be used below. An <^-space
X is ^g^-closed if and only if every countable open filter base on X
has nonempty adherence. An ^g^-space is J^-minimal if and only
if it is semiregular and ^g^-closed.

We shall now describe constructions which can be used to densely
embed certain ^-spaces in ^f -minimal (.^-closed) ^-spaces. As
special cases, we shall obtain examples with the properties mentioned
in the introduction. First some terminology is needed.

A space X is said to be locally pseudocompact (W. W. Comfort)
if every point of X has a pseudocompact neighborhood.
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A filter base j^~ is said to be pseudocompact if for every F e ^
and G e ̂  F — G is pseudocompact. ^ is called zero-dimensional
if the sets belonging to it are open- and-closed.

Notation. (B. Banaschewski). Let ̂ f be a family of open filter
bases on a space X. Let {p{^~)\^~ e ̂ Γ} be a new set of distinct
points, and let X(ΛP) be the space whose points are the elements of
X \J {p(^~)\^~ e ̂ } and whose topology has as a base sets of the
form F* = V U {p{^)\V contains some member of ^r}, where V is
any open subset of X.

THEOREM 1.1. Let X be an Sίf-space containing a point a such
that X-{a} is a zero-dimensional locally pseudocompact space. Let
~4^ == {^\^ is a free, countable, pseudocompact, zero-dimensional
filter base on X}9 and denote by ^// a maximal subset of <yK such
that whenever JFΊ & e ̂ f with j ^ Φ &, then there exist disjoint
sets Fe^ and Geg 7 .

Then the space X(^f) is an £έf-closed c^-space in which X is
embedded as a dense subset, and X{^^€) is J%f-minimal if and only
if X is semiregular.

Proof. X(^£) is clearly an <^-space. Furthermore, it follows
from the hypothesis that each point of X{^) — {a} has a fundamental
system of feebly compact open neighborhoods. Thus the characteristic
functions of open-and-closed subsets of X{^€) separate the points of
X(^T) and XP/T) is a <if-space.

Suppose that J^ is a countable open filter base on X{^) and
no point of X is an adherent point of ^ 7 A slight modification of
the proof of Lemma 2.17 in [11] shows that there exists a free,
countable, pseudocompact, zero-dimensional filter base g Ό n l which
is stronger than the filter base &~\X. By the maximality of
there exists ^T* e ̂  with G Π Hnonempty for all G e gf and He
Thus p{3ίΓ) is an adherent point of

To check semiregularity, it suffices to observe that if

aeV=IntxClxV, then F* =

THEOREM 1.2. Let X and a be as in Theorem 1.1, and suppose
that {Vn\neN} is a fundamental system of open neighborhoods for a
such that Vί = X and each VnZ)ClxVn+ι. Let ^ be a maximal
family of free, countable, pseudocompact, zero-dimensional filter bases
on X such that (a) whenever ^ , gf e ^ with ^ Φ S ,̂ then there
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exist disjoint sets F e J^" and GeSf, and (b) for every ^~ e ^ there
exists ne N such that U - ^ c Vn — Vn+1.

Then X(^/S) is a regular ^-space that is £$f-minimal and
contains X as a dense subspace. If each Vn is closed in X, then
X{^€) is zero-dimensional.

Proof. Since {p{^)\^ e ^£) — {a} is a closed discrete subset
of X{^T) - {α}, it follows from (b) that ClZwVt+ι = Vt+1UClxVn+1.
Thus X(^#) is regular, and if each Vn is closed in X, then X(^f)
is zero-dimensional.

The proof that X(^/f) is feebly compact is similar to the correspond-
ing proof given for Theorem 1.1-one just notes that for some n,
^\{ClxVn — ClxVn+1) is a filter base, and so ^ can be chosen with
the property that U 2^ c Vn — Vn+1.

REMARK 1.3. In case the set / of isolated points of X is a dense
subset of X, ^f can be defined as follows. Let g7 be a maximal
family of countably infinite subsets of I such that (a) the intersection
of any two members of if is finite, and (b) each member of g7 is a
closed subset of X (for Theorem 1.2, a closed subset of some
Clx{Vn - Vn+1)). For each Ee & let ^{E) be the complements in E
of finite subsets of E. Take «̂ T = {^(E)\Ee gf}.

REMARK 1.4. For the case X = N and ^f infinite, the space
is due to J. Isbell (see [5, 51]).

REMARK 1.5. In general, the space X(^£) is not countably
compact and hence not weakly normal, for each {p{^)\^" e ^£\ — VI
is a closed discrete subset of

COROLLARY 1.6. Every locally pseudocompact zero-dimensional
-space can be embedded densely in a pseudocompaet zero-dimensional
-space.

EXAMPLE 1.7. For the following X, the
Jg^-minimal ^-space that is not regular.

space X{^£) is an

Let T = {0}\j{l/neN}9 with the usual topology, choose a point
a not in the product space Nx T, and let X = {a} U (Nx T), topologized
as follows: every open subset of iVx T is open in X; a neighborhood
of a is any set of the form Vn = {a} U {(x, y) e X\x ^ n and 1/y is an



822 R. M. STEPHENSON, JR.

even integer}, ne N. (X is homeomorphic to E — {6}, where E is as
in [13, p. 268].)

One can take ^€ to be a maximal family of infinite subsets of
X — CIV1 such that the following hold:

( i ) For all M, M' e ^£, MΦ W implies Mf] Mr is finite;
(ii) For all J l ί e y / and n e N, Mf] ({n}x T) is finite.

EXAMPLE 1.8. For the following X, the space X{^€) (of Theorem
1.2) is an ^g^-minimal ^-space that is regular but not completely
regular.

Let Y be the set of ordinal numbers less than the first uncounta-
ble ordinal, with the order topology, let M be the set of limit ordinals
in Y, and denote Y - M by / . Let Z = /x{0}U YxN, topologized
as follows: YxN has the product topology, and YxN is open in Z;
a neighborhood of a point (i, 0) e Z is any subset of Z that contains
(ΐ, 0) and all but finitely many elements of {i} x N. Let L and R
denote the product spaces Zx{l} and Zx{2}, and set U — L{jR, with
the weak topology generated by {L, R}. Let S be the relation on U
defined by the rule: (x, ί, j)S(y, k, n) if (a) x = y, ί = fc, and j — n,
or (b) x = y e M and i = Jc. Denote the quotient space U/S by T.
We shall continue to use the symbols (x, i, j) for the points of T.

n

On the product space TxN define (t, n) W{t', n') if (a) t = t' and
= nr, or (b) t = (a;, 0, i), f = (x, 0, i')> and v! — n = j1 - i ' = 1 or

n — n' = j ' — j = 1. Let Fbe the quotient space (TxN)/W. Choose
a new point a and let X = F u M , topologized as follows: every open
subset of V is open in X; a neighborhood of a is any set of the form
Vn = {α} U {(£, m) e Ffm ^ w}, ne N.

It is not difficult to see that X is a first countable regular space
whose isolated points are dense, and X — {a} is zero-dimensional and
locally compact. X is not completely regular, because for every
f G C(X) there exists me Y such that / is constant on

{(a?, 0, j , n)\x ̂  m, i = 1 or j = 2, and ne N} .

Thus V2, for example, contains no zero set neighborhood of α.

REMARK 1.9. The construction above is a modification of
TychonofΓs regular but not completely regular space [12].

In [7] F. B. Jones has constructed a ^-space that is not com-
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pletely regular but that is a Moore space. His space cannot be used
here, however, because it is neither locally pseudocompact nor zero-
dimensional.

In the literature there are many less messy examples of ^-closed
or J^-minimal spaces that are not regular; however, the author does
not know of any ^-minimal space appearing elsewhere that is not
regular (or completely regular).

REMARK 1.10. If one glues together (as in [2]) two copies of the
space in Example 1.8, then one gets an example of a regular gίf-
minimal space that is not completely Hausdorff.

2* ^-minimal spaces and closed mappings* If ^ denotes
any one of the usual separation properties, it is known that every
^-minimal completely Hausdorff space is compact (e.g., see [6]).
Moreover C. T. Scarborough [9] has observed that a completely
Hausdorff-minimal space is compact.

One might then expect if-minimal spaces to be well behaved, to
be, say, at least countably compact. Of course, IsbelΓs example or
Mrόwka's [8] (or ours) shows that this is not the case. The following
characterization theorems may, therefore, be of interest.

DEFINITION. (H. E. Hayes) An open filter base ^ on a space X
is said to be completely Hausdorff provided that for every x e X, if x
is not an adherent point of J^~, then there exist fe C(X) and F ej^
such that f(F) = 0 and f(x) = 1.

Using usual techniques, one can prove the following.

THEOREM 2.1. Let X be a ^-space. The following are equivalent.
( i ) X is ^-closed.
(ii) Every countable completely Hausdorff filter base on X has

an adherent potnt.
(iii) For every c^-space Y and feC(X, Y),f(X) is if-closed.

In order to obtain a if-analogue of Theorem 2.4 of [11], we need
a second definition.

DEFINITION. An open filter base j ^ ~ on a space X is said to be
almost completely Hausdorff if there exists peX SΘ that for every
xeX — {p}, if x is not an adherent point of ^~, then there exist
feC(X) and Fej?~ such that f(F) = 0 and f(x) = 1.
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THEOREM 2.2. Let X be a ^'space. The following are equivalent.
( i ) X is ^-minimal.
(ii) Every countable completely Hausdorff filter base on X that

has a unique adherent point is convergent.
(iii) X is semiregular, and every countable almost completely

Hausdorff filter base on X has an adherent point.

The proof is somewhat similar to the proofs needed for Theorems
2.4 and 2.9 in [11].

The next result, to be contrasted with (iii) of Theorem 2.1, is a
partial converse to the following well-known theorem: If X is a
countably compact space, Y is an .^"-space (or a space of the type
E1 studied in [1]), and f eC(X, Y), then / is closed.

We shall call an open filter base J^ on X completely regular if
for each F G ^ there exist G e ^ and feC(X, [0, 1]) such that /
vanishes on G and equals 1 on X — F.

THEOREM 2.3. Let & denote either completely Hausdorff, com-
pletely regular, or zero-dimensional, and suppose that X is a ^-space
which is also an S^f-space. The following are equivalent.

( i ) X is countably compact.
(ii) For every ^ίf-space Y and f eC(X, Y), f is closed.
(iii) For every έ^-space Y that is an ^f-space and f e C(X, Y),

f is closed.
(iv) For every closed subset C of X and every countable 3?-filter

base ̂ ~ on X, if ^\C is a filter base and if n J^~ = Γ){F\FeJ^},
then there is a point ceC which is in

Proof, (i) => (ii) is known, (ii) ==> (iii) is obvious. A proof not
too different from one in [3] shows that (iii) » (iv). We shall prove
that (iv) => (i) for the case & = completely Hausdorff.

Let us suppose then that X is a ^-space which contains a
countably infinite closed discrete subset C.

Consider a point ceC. Since X is completely Hausdorff and
C — {c} is countable, there exists / e C(X) for which f(c) £ f(C — {c}).
Since C — {c} is a closed subset of X and / is closed, we can choose
flfeC((-oo,oo)) with g(f(c)) = 1 and g(f(C - {c})) - 0. Set hc = gof.

Let ^ be the family of all finite intersections of

{h7ι(- 1/n, l/n)\neN and ceC}.



MINIMAL FIRST COUNTABLE HAUSDORFF SPACES 825

Then it is easy to see that J^ is a countable completely regular (and
hence completely Hausdorff) filter base on X, that Π ^ = Γ){F\Fe J^},
and that j^\C is a filter base. On the other hand, one also has
Cf] ΠJ^ = φ. This contradicts (iv).

REMARK 2.4. There exists an i^-space X that is not countably
compact but which has the property: for every Hausdorff space Y
and feC(X, Y), f is closed. See [3] and [14].
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