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We will prove the following: Let M be a finite von
Neumann algebra with center Z and A a von Neumann
subalgebra of Z, Let 2 be the spectrum space of A and
identify A with C(2). Let ¢ be a s-weakly continuous linear
map of M onto A such that e(z*r) = <(xzx*) = 0 for every
€M, &ax) = as(x) for every ac A and zxc€M, ¢1) =1 and
glx*x) + 0 for every nonzero x< M. For each we®, let m,
denote the set of all xc M with <(x*r)(w) =0. Then m, is a
closed ideal and the quotient C*-algebla M/m, is a finite
von Neumann algebra. Furthermore, if x., denote the
canonical homomorphism of M onto M/m,, then =, (IN) is a
von Neumann subalgebra of M/m, for every vom Neumann
subalgebra N containing A,

In [8], [3] and [5] it was shown that the quotient C*-algebra of
a finite von Neumann algebra by any maximal ideal is actually a finite
factor. This led us to the algebraic reduction theory for finite von
Neumann algebras, which is free from the separability restriction in
the direct integral reduction theory. In this paper we will show that
the above result still holds for certain ideals, not necessarily maximal.
Namely, we will give a straightforward proof for the following.

THEOREM. Let M be a finite von Neumann algebra with center
Z and A a von Neumann subalgebra of Z. Let Q be spectrum space
of A and identify A with C(R). Let ¢ be a o-weakly continuous
linear map of M onto A such that e(x*x) = e(xx™*) =0 for every
x e M, elax) = as(x) for every ac A and xec M, (1) =1 and e(z*x) = 0
for every nonzero x€ M. For each we R, let m, denote the set of all
xe M with e(x*x)(@) = 0. Then m, is a closed ideal and the quotient
C*-algebra M/m, is a finite von Neumann algebra. Furthermore, if
7, denote the canonical homomorphism of M onto M/m,, then 7, (N)
is a von Neumann subalgebra of M/m, for every von Neumann sub-
algebra N containing A.

Before going into the proof, we observe that there exists such a
map ¢ if Z is o-finite. Since M has the K-operation, it suffices to
show that there exists a o-weakly continuous faithful projection of norm
one from Z onto A. If Z is o-finite, then Z admits a faithful normal
state . Considering the cyclic representation of Z induced by @, we
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may assume that Z acts on a Hilbert space 57 containing a vector
& such that (z&,]&) = ¢{x), x€Z. Let e be the projection of 5~
onto [A&]. Then e is an abelian projection in A’ with central sup-
port 1. Note that the center of A’ is A itself. Then there exists
an isomorphism 6 of e¢A’e onto A such that 6(xe) = x for every vc 4
because A is the center of A’. Put ¢,(x) = O(ewe) for every ze Z.
Since ¢ is not orthogonal to any nonzero projection in Z, ¢, has the
required properties. As the composed map of this ¢, and the g-
operation in M, we get a desired map ¢. Hence, the situation in the
theorem is always presented for any von Neumann subalgebra A4 of

Z it Z is o-finite.

The proof of theorem. We will prove the assertion for the sub-
algebra N which implies immediately the former assertion.

Let 7,(z) = ¢(x)(w), xe M. Then r, is a finite trace of M with
the left kernel m,. Let {z, 2%, &} be the cyclic representation of M
induced by t,. Since 7w has the kernel m,, 7 induces a faithful rve-
presentation ¥ of the C*-algebra M/m,. Since 7o m (N)= n{N), it
suffices to show that m{(N) is a von Neumann algebra. Since the
functional z,(x) = (x5,|&), xen(M)”’, is a faithful trace on the von
Neumann algebra w(M)”’, & is a cyclic and separating for w(M)”.
Let S, denote the unit ball of N. Then by Kaplansky’s density
theorem 7(S,) is strongly dense in the unit ball Sy of the von
Neumann algebra N = w(N)” generated by m(N). Since the map
rxern(M)” — &, is injective, if 7w(Sy)&, = S3é, then we have 7(S,) =
S#; hence N = z(N).

Therefore, we shall prove that 7(Sy)&, is complete. Let {x,} be a
sequence in S, such that

lim [ 7(x,)5 — 7T(@)5 | = 0.

Congidering a subsequence of {x,}, we may assume that
I w(@,)ée — m(a, ) 1 <277, n=12 .
In other words,
(@ = Toi) ¥ (B0 — T )@) <47, w=1,2, 000

Let {U,} be a decreasing sequence of neighborhoods of ® in 2 such
that
6((3‘67» - xn+!) * (xn - xn+1))(0) < 4“—70

for every 6 U,,n =1,2,-++. For each n=1,2, .-+, let ¢, be the
projection of A corresponding to the closure of U,. Then e, (@) =1
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for n=1,2,..-. Putting y,=2, and y,= e, + 1 — ¢,)y,_, for
n = 2,3, -+ by induction,

6((yn — yn+1) * (yn - yn+1)) < 4-n 5
n(yn)&) = T[(xn)fo 3y n = 1, 2, Ty

Now, for any normal state @ of A, put 7,(x) = ® o ¢(x), x€ N. Then
7, is a normal finite trace of N with the support s() € A, where s(®)
means the support of @ in A. By the inequality:

TS"((yn - yn+1) * (yn - yn+1)) =@e 8((?/'» - yn—H) * (yn - yn-{—l)) < 4= ’

w=12, -+, {y,8(P)} converges o-strongly to y,e S, because the o-
strong topology in Sy N Ns(®) is induced by the metric d defined by
d(@, y) = To((x — ) * (= — y)'*, 2, yeSyN Ns(p). Let {P}icr be a
maximal family of normal states of A with orthogonal supports.
Then >;.8(®;) = 1. Let y = 3ic1¥,, €Sy. Sinee {y,s(®;)} converges
o-strongly to s(@;)y = y,, for each iel, {y,} converges o-strongly to
y. Now we have, by the triangular inegquality,

ntp—1
(Wn — Ynip) * Wn — Yuap))* = kg':'b (Y — Yird) * (U — Yiar)'*

2+p—1

< k}_] 2k < gt
for n, P=1,2,---. Hence we have
(W = 1) * W — W) = lm (@ = Yar) * W = Vs = 2770,
so that
| ZWne — TWE || = &(Un — ¥) * @ — Y@)* < 27
hence
lim 7(y,)¢, = T()¢, -

Therefore, the given Cauchy sequence {7(x,)&} in 7(Sy)&, converges to
n(y)&, € m(Sy)s,. Hence m(Sy)&, is complete, hence closed in 5#°. This
completes the proof.

By [7], we should remind that if M is a von Neumann algebra of
type II, and if ® is not an isolated point of 2 then M/m, does not
admit nontrivial representation on a separable Hilbert space even if
M does have faithful normal representation on a separable Hilbert
space.

Suppose now A is o-finite and ® is not an isolated point of Q.
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Suppose that any nonzero projection ¢ € N majorizes a projection fe N
such that e(f) = ¢(¢e — f). Then we claim that the von Neumann
algebra 7,(N) does not admit a faithful separable normal representa-
tion.

Let {e,} be a decreasing sequence of projections in A converging
g-strongly to zero such that ¢, (®w) =1 for n =1,2,--.. Such a se-
quence does exist by the nonisolatedness of @ and the o-finiteness of
A. Let f,=¢,—e¢,., for n=1,2,..-.. By the assumption for N,
there exists orthogonal projections p*, and »?, in N such that f, =
pr, + o, and e(p”,) = &(pr,) = £f.. Suppose we have found projections
pr,ii=1,+4,k,j=1,2,+-+,2% such that

(1) for fixed ¢, {p?;:5 = 1, --+, 2%} are orthogonal;

(2) Pl = Diej— + Diegs

(3) e(pt;) = 27 f ..

By the assumption for N, we can find orthogonal projections {p?.,;:
j=1,2,...,2%% such that

Pii = Dirnei—a T Dipres s
&(phiy,i) = 27 f §=1,2,...,20,

For each integer ¢, put
2" .
Ui = J; (—1ypi,; -

Then we have «}, = f, and for different 4, and 7, w,,;,u,,: is the
difference of two orthogonal projections p and ¢ such that e(p) =
&(q) = 4. hence (U, Wn,i,) = 0 if 4, 7 5.

To each real number s we associate a sequence {i,,} of integers
such that

.7
lim 2% = g,
n

n—rco

If s +# ¢, there is an n, such that i, , # 1., for every » = n,. Put
Us = i un,is n®
n=1 ’
Then we have e(u,u.)(1 — e,) = &(u,u,). Therefore we have

Tw(ui) = 1! Tw(usut) = 0 if 8 # t.

Therefore {m(u,)&,} is a continuum of orthogonal vectors in [7(N)&].
Therefore, the standard representation of the von Neumann algebra
7,(N) is not separable. Thus 7,(N) does not admit a faithful normal
separable representation.

Now, let 4 and B be two abelian von Neumann algebras with
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no minimal projections. Let C be the tensor product A ® B of A and
B. Then A and B are regarded as subalgebras of C. If B admits a
faithful normal state +, then there exists a faithful normal projection
¢ of norm one of C onto A defined by

e(@), P)y = <&, P R ¥
for every @ € A,. This map has the property:
eaX@Rb) = pb)a,ac A, beB.

If A is o-finite, then C/m, is an abelian von Neumann algebra, with
no separable faithful normal representation. It is easily seen that the
map 7, is o-weakly continuous on B; hence w,(B) is a proper von
Neumann subalgebra of C/m, if B has a faithful separable normal
representation. Therefore, the pathology that the component algebras
are much larger than the synthetic algebra does occur even in the
abelian case.
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