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RICHARD BEALS

General conditions have been found which imply that the
perturbation A 4 g of an elliptic differential operator A by
a singular potential term ¢(x) has a closed extension B in
L*(R*) having the same essential spectrum as A, The purpose
of this paper is to sharpen the known results slightly and
to estimate the characteristic numbers of the operator
(A+2)? —(B+2?, Under an appropriate assumption on
g(x), this operator is shown to be of trace class for large
p. In the self-adjoint case it follows then from results of
Kato that wave operators for the pair (A, B) exist and that
the absolutely continuous parts of these operators are unitarily
equivalent,

Let » be a positive integer and let

A(CU, D) = Z Da(aaﬂ(x)Dﬁ)

la|=r,|8l=r

be a differential operator of order m = 2r. Here
SCGR”, a = (aly M} an): lal = Zai ’

and D* = (—1)'“ [] (0/ox;)*. We assume throughout that a,; has
continuous derivatives of order < max{|al,|gB|}, and the derivatives
are uniformly bounded. For |a| = |B| = r we assume a,; uniformly
continuous. Finally, A(z, D) is uniformly strongly elliptic: there is a
constant a, > 0 such that

Re( I aaﬁ(w)é“éf?) = a,|§|"
for all xe R*, &e¢ R".

Let A, be the restriction of A(x, D) to &, the smooth functions
with compact support. Let A be the closure of A4, in L* = L*R").
Various conditions have been given on a potential term ¢(x) such that
A + q have a closed extension B with the same essential spectrum as
A, either generally or in the particular case A = — 4;[1], [2], [4], [6]-
The most general result of this sort seems to be that of Schechter
[8],]9]- We shall sharpen Schechter’s result and then investigate
the characteristic numbers of (A + A)™ — (B + \)™7.

For £t > — n and 2 # 0, set w,(x) = |z|” if £ <O,

7
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wy(x) = (—log |2))*, w.(x) = 1
if #> 0. Suppose ¢ is a measurable function defined on R" and
suppose ¢t > —n,p > 0,0 >0, xc R*. Let
Mypn@ = |

M/J,p,x(q) = Mﬂ,p,l,x(q) ’
M/‘:Z’,J(q) = SE‘p Mﬂ,p,ﬁ,x(q) ]

Mﬂm(‘]) = Mp,p,l(Q) .
We shall assume throughout that

- lg(x — y)I” . (y)dy ,

(I) MZm—n,l(q) < oo, Mm——n,l(Im q) < oo, and
M, ..{(Re ¢))—0as o6—0,if m<n.

Note that these conditions are implied by

(I), MZm—n,l(<Re Q)+) < oo, Mm—n,l(Im Q) < oo,
' M, (Reg)”) < = for some < m — n.
In fact M, ,(q) < ey, v, 0)M, , (@) if ¢ < v. Thus the conditions (I)

imply the first two conditions in (I). If m < n, take p <y < m — n.
The Schwarz inequality gives

[Mp,l,ﬁ,x(Q)lz = M#’l,a,x(Q)&yké Jq(x — y)l ly’h—‘a dy

= My, (@F o,

which implies the third condition in (I). Note that if m > n then
@) and (I)’ coincide; in fact M, , (f) is constant for v > 0.
Take measurable functions p, o, 7 such that

(1) 0= (Re ¢)*,0°=Re ¢, " =Im ¢ .
For real [ let

(2) luli = @ + 120 (@@ rds, ve =,

where % denotes the Fourier transform of . Let H' be the comple-
tion of <& with respect to this norm. Then H° = L*. When [ is a
nonnegative integer, an equivalent norm is

(2) > D ulff

la, =1

Let W~ be the completion of & with respect to the norm
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(3) [wl = llullz + |lowll .
Let
b(u, v) = a(u, v) + (qu, v) = > (@D, D*v) + (qu, v)

for u, ve <7, where (4, v) is the L*-inner product. As in [9], this form
extends to W*. Define B, as an operator in H° by Bu = Au + qu
for w e & such that que H°. Define B by Bu = f in H® if and only
if we W~ and b(u, v) = (f, ») for all ve Wr.

THEOREM 1. B is a closed extension of B,. There is a constant
N, such that A + N and B+ ) are 1 — 1 and onto for Re v = N,. If
Aus = Aop and q 18 real-valued, then A and B are self-adjoint.

The essential spectrum of a closed operator T in the sense of
Schechter {7], 0..(T), is the complement of the set of complex M such
that T — ) has finite-dimensional null space N and closed range of
codimension equal to the dimension of N.

THEOREM 2. Suppose
(II) Myn1,s(@) — 0 as (2] — oo,

Then for Re X =N,y (A + N — (B + N7 is compact. Conseguently

A and B have the same essential spectrum.

The characteristic numbers of a bounded operator S in a Hilbert
space are defined by

(4) #(S) = inf sup  [[Sull, =1,2,---.

codim(H ;)<j ueH llull=1
For compact S, these are the eigenvalues of (S*S)* arranged in non-
increasing order.
THEOREM 3. Suppose a > 0 and

Mo (Re @)F) = 0(Jx[7*) as [€]— e,

(11D, . -

Mol — (Re ¢)F) = 0(|2]7) as @[ — =,
or
(I1D), Mo-n1,0(@) = 0(12[7%) as [@]— e .

Then for any & > 0 there is an integer pie) such that
(A 077 = (B4 N77) = 0" as j— o

Jor p = p{e), Re M = N\,
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TueorEM 4. Suppose (III), or (III); holds for some a > n, and
suppose A and B are self-adjoint. Let P, and P, be the projections
on the absolutely continuous subspaces of A and B respectively. Then
the wave operators

W.(B, 4) = s — lim ¢&*®2 ¢™4P, |

totoo

W.i(A,b) =s— lim ¢t ¢ 2P,

t—too

exist. The operators AP, and BP, are unitarily equivalent.

REMARKS 1. Theorem 1 is proved in [9] under the stronger
assumption (I)'.

2. Theorem 2 is proved in [9] under the assumptions (I)’ and
(II)’, where

M, ((Re ¢)") < o for some v < 2m — n ,
(II)I -
|, 9@ —)ldy—0as 2] - .

Again these assumptions imply ours. If 2m > n, (II)’ is the same as
(II). Otherwise take v < n < 2m — n. Then M,,_,..(q¢) < cM,, .(q)
and Holder’s inequality gives

M,,..(q) = [M,]pm(q)]x/p[g Gt - y)]upr

Iyl
for 1< p < oo, 1/p + 1/p'=1. Taking p = v/n and using (II)’, we
get (II).

3. Theorems 3 and 4 are not difficult when » is large relative
to n or when ¢ is smooth. However in the Schrodinger case » = 1,
and in general one wants to allow singular ¢. Our methods for
handing the general case are cumbersome, but effective.

4. There is a large body of literature on the existence of wave
operators, but none of the previous work seems to cover explicitly
general potentials as locally singular as those considered here.

2. Proof of Theorem 1. The proof is a modification of the
proofs of similar theorems in [8] and [9], to which we refer for
details.

For s> 0, let g, be the tempered distribution with Fourier
transform (27)™*(1 + |[£)~*%. Then g, is in L' and

l9.(@)| = cw,_(¥) for |2] =1,

5
(5) < ¢, exp(—d, |x|) for |x| > 1, where d, > 0.
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From (2) we get

(6) llellivs = [1Gyull;, all real ¢,

where G, is the convolution g,xu. In fact
[Goul* = @ + [EF)"a .

We can use this equation to define G, for s < 0; then (6) holds and
GG, = G,,, for all s, ¢.

LemMmA 1. If s > 0 and M,,_,.(f) < o, then multiplication by f
maps H*® into H® and H°® into H=°. Moreover

(7) [ fulld = eMssn,o(f) l10][5
(8) Il = eMyson,o(F) Hl2ll

¢ independent of w and f.
This is proved in [8]. We also need a sharper form.

LeMMA 2. If s > 0 and M,,_,.(f) < o, then for all 6 > 0,
(9) HFwlfs = eMaep,o,o() i + ¢(0) Meon,o(f) [wlff

with ¢ independent of f,u, and d.

Proof. Choose ®c &7 such that o) =1, lz| < 1/4, @) =0,
2] > 1/2. Let @iz) = (0~ x). Let g, = @9, + L — ®5)g, = ks + 1,.
Let Ksu = kfu, Lyu = lFfu. Then

(10) W Fulle = 1 FG.G_ull, = [| FEGall + [ f LGl -

We want to compute ||fK,|[, the norm as operator in H°. But
|FEG P = | KA = | FKKSf*]|, where f* is the complex con-
jugate function. Now K,K; is convolution with & = kfkF and this
is easily shown to have |k(z)| £ ¢,y _ () for |z| < 8, k(x) = 0, || > 7,
with ¢, independent of 6. Then the Schwarz inequality gives

|(FE K u, v) [P = Sif(x)%(x — Yuy)’| dydmglf(y)%(w — Y)v()*| dady

= Moo s(OF 2[5 0[5 -

This shows that || fK;||* < ¢, My_n.s(f). Finally, I; is a smooth func-
tion of rapid decrease, so L, is continuous from FH°to H®. Combining
these facts with (6), (7), and (10) we get (9).

Our assumptions on A(z, D) imply [8]

(11) Re a(u, w) = Re(Aw, w) = ¢, [|ulf— c:[lull}, ue =,
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where ¢, > 0. Conversely it is clear that

(12) la(u, v)| < e llull- [|v]],, w,ve = .
From (12), (7), (3) and assumption (I) we get

(13) [b(u, v)| < e, |ul|v|, u,ve = .

Therefore b(u, v) extends uniquely to a continuous form on W™.
When m < n, assumption (I) and (9), (11) give

Re b(u, u) = Re a(u, u) + [[oul|l; — [[oul[;

(14)
= ¢ |ult — e llullf,

with ¢; > 0. This also holds when m = n; here multiplication by o
is continuous from H*® to H° for any s > 0. Taking 0 <s < r and
using the well-known fact that for ¢ > 0,

lulle = eflullz + c(e) lfulfi

we again can get (14).

It is now easy to show that B as defined in §1 is a closed
extension of B,, c¢f. [9]. The fact that B+ A is 1 — 1 and onto for
Re M=\, > ¢, follows from (14) and the Lax-Milgram lemma as in
[9]. Finally, if a,; = @.; and g is real-valued, then for u,v in the
domain of B,

(Bu, v) = b(u, v) = b(v, u)* = (Bv, w)* = (u, Bv) .

Thus B is symmetric. For A =, (B + \)~' is symmetric, hence
self-adjoint. Then B + )\ and B are self-adjoint. It can be shown
that A as defined above is the same as A defined by Au = fe H° if
and only if we H" and a(u,v) = (f,v), all ve H". Then the same
results hold for A.

3. Proof of Theorem 2. Suppose Re A = ),. For convenience
we may replace A, B by A + N, B+ )\, and assume that A and B
are invertible. We want to show that A~ — B~' is compact.

The space H—" is dual to H” via the inner product in H°.
Specifically, we can consider H*® as contained in H*® for s = ¢ in the
obvious way. Then H~" is the completion of H® with respect to the
norm (identical to the previously defined norm)

lwll-, = sup |(u,v)].
ve HT,||v||,=1
Similarly, define W~ as the completion of H° with respect to the
norm
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lwl-= sup |(u,v)].

veWr,||v||=1

Because of the definitions of the norms we have natural inclusions

(15) WrcH cH cH "c W—.

LEMMA 3. A and B have unique bounded extensions mapping H"
onto H™" and W™ onto W~ respectively.

Proof. For u in the domain of B, (13) gives

|Bu|_ = §1[1£l(Bu, v)| = §1}:1f>|b(u, )| = elul.

Thus B has a unique continuous extension B, mapping W~ into W~'.
With our replacement of B by B -+ A we have ¢, < 0 in (14), so B,
has closed range in W-". The range includes H° hence is all of
W-". Similarly A has an extension A,.

From now on we shall drop the subscripts on A,, B, and consider
A, B as being defined either on their original domains or on H", W".
Since A* maps H™ onto H° [8], we can also, by duality, consider A
as mapping H° onto H~™. With these conventions,

A" — B = A(B — A)B~ = A~qB"

16
(16) — (A0)(0B~) — (A~'0)(@B~) + i(A-'7)(cB~)

on W—. In fact (0B~') is bounded from W~-" to H° via W~, while
A7 is bounded from H° to itself via H™™, by Lemma 1. Similarly
for the other terms. We want to show that each term on the right
in (16) is compact, but shall consider in detail only the first term.

Take e & with ¢(x) = 1, |2| < 1/2, and @(x) = 0, |x| > 1. Let
p(x) = p(t™'x), t > 0. We consider multiplication by ® as an operator,
also denoted by @. Write

AT0*B™ = A7'olp0B™] + [A70(1 — @) B .

Lemma 1 and assumption (II) imply that the norm of the second
term on the right as operator in H°® goes to 0 as ¢t-— o. Therefore
in suffices to show that the first term on the right is compact.
Assumption (I)’ implies that A~'op, is compact [9]. We shall show
that in any case, ®,0B7" is compact. In general, if S is bounded from
W or H" to H°, ®»S will not be compact in H°. We must use
particular properties of B~.

LEMMA 4. Let S be a bounded operator in. H® such that one of
the following holds:
(a) S s bounded from L* to H®, some s > 0;



14 RICHARD BEALS

(b) S is bounded from H™* to L* some s > 0.

Suppose e . Then in case (a), ®S is compact in H°, while in
case (b), S@ is compact in H°.

Proof. This follows immediately from the well-known fact that
® is compact as operator from H*® to H° or from H° to H".

We shall say that a bounded operator S in H° is acceptable if it
is of the form

(17) S = (@lsﬂ'ﬂ) (QDZSNfz) ce (Cpksk“ﬁk)

with @;, ;€ &7 and each S; bounded in H°. We say that S in the
form (17) is of weight:-N if there are integers N; = 0 with XN; = N
such that for each j, S; is either bounded from H® to HY or from
H7"i to H".

If pe &, ® clearly maps W~ and W~ into themselves. On W—
the commutator [B™, ] = B¢ — @B~ can be written

[B™, ] = B7[®, BIB™ = B7Y[p, A|B™* = B~'C(9)B™",

where C(p) = [p, A] is a differential operator of order < m. It is
easily seen that for u, ve &,

(C(@)uy ?)) = Z(caﬁDﬁuy Da/v)

with the summation over |a|=7r, |8l =7 |a|l+ |8 <m. The
coefficients ¢,; have bounded derivatives of order < max(|«l, |B]),
with the bounds depending only on the bounds of derivatives of the
a.s and of @. It follows readily from this, duality, and the equivalent
form (2)" of the norm that

(18) HC(g))qu—m~1 g C(@) Hqu’ k= — 1: 0’ 17 cer, M,
with
(19) olp)=c sup [DP@)],

¢ independent of @. Note also that if @ = @, then
C(p) = vC(p) = C(P)y .

Let s =»r if » is even, s=7 — 1 if » is odd. Define 4* = G4,,
where G, is as in § 2. Then A" = (1 — 4)°* is a differential operator
of order s.

LEMMA 5. Suppose @,-re 7 and N is an integer = 0. Then
@A C( B~ can be written as a sum of acceptable terms of weight
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— s — 1 plus a remainder term of the form ST with S acceptable of
weight-N and T bounded in H°.

Proof. Induce on N. For N =0, take S= ¢, T= A~ C(y)B~".
Otherwise take « = 4y, ¥y, Vo€ & With 0 = 5. Set C = C(y),
C, = C(+), BR= B™*. Then

®A~CR = 94~ Cy,R
= @A CR~y, + @A~ CRC.R ,
(21) R"/’l = R”‘/fl/ﬁ/l_“h = (R"/’x/ﬁ“/’z)(l#z/l_’%[’l) .

Now A~CR+, A" is bounded from H™* to H° if s =» — 1 and from
H° to H' if s =7, so the first term on the right in (20) can be
expressed in the desired form (with no remainder). As for the second
term,

(20)

PA CRC,R = @A~ CR+yr, A7 A~ C.R
= [@A~CRr Ay, A C.R] -

The first term in brackets is again acceptable of weight —1, and
we may apply the induction assumption to the second term.

LEMMA 6. Suppose p ¢ & and N is an integer = 0. Then @B™'
can be expressed as a sum of terms of the form @B 7lpATS with S
acceptable of weight £ — s and € =, plus a remainder term of the
Jform @B 'Y ATST with S acceptable of weight — N and T bounded in
H°.

Proof. Take 4 = vy, i, ¥ € & With P = @, rjr; = 5. Let
C = C(), R= B™'. Then
PR = 9y R = pRy + pRCR .
Now @R+ can be expressed as in (21), while
PRCR = @Ry ,CR = [pRyr AT r,][4. A CR] .

Applying Lemma 5 to the second term in brackets, we get what we
want.

COROLLARY. If @€ =, ppB™" is a compact operator in H°.

Proof. Lemma 6 shows that @oB™ is a sum of terms of the
form [poB 4418, v, ne &7 and S bounded. Moreover, if s > 0 then
by Lemma 4 S is compact; if s = 0 then A+ = I and the term in
brackets is compact, mapping H™" into H°.
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The conclusion of the Corollary applies with o replaced by ¢ or
7, 80 A™' — B™' is compact. This proves Theorem 2.

The following will be used in the proof of Theorem 3.

LEMMA 7. Suppose pec = and N is an integer = 0. Then @B
can be expressed as a sum of acceptable operators of weight — m, plus
remainder terms of the form ST, S acceptable of weight — N and T
bounded in H°.

Proof. When s = »r, B7'4A" is bounded from H° to H" and this
conclusion follows immediately from Lemma 6. When s = » — 1,

PBT Ay = PBTY AL — Dyl — A7

Breaking up 47(1 — 4) into monomial differential operators, we get a
sum of terms @B K, Fo(1 — 4) 7', with B, E, differential operators
of orders < » and < 1 respectively. These terms are then acceptable
of weight (—7r) + (—1). Thus again the conclusion follows from
Lemma 6.

LEMMA 8. Suppose pc & and N an integer = 0. Then A™'p
can be expressed as a sum of terms of the form SA7'¢ with S
acceptable of weight 0, plus a remainder term of the form TSA '@
with S acceptable of weitght — N and T bounded in H°.

Proof. Take Yoy Yiy Yoy ¢ in & with VP = Py Yini = Vi Let
R= A", C,; = [p;, Al. Then

Ry = "/’OR — RC,Rp
= o Bp — ¥ RC,Rp + RC RCRp .

Now RC; maps H™ to H°, s0 +;,RC; ;.. is acceptable of weight — 1.
Continuing as above, we get acceptable terms of the form we want,
plus a remainder term

+ RCyRCy_ R --- RC)|Rp .
Take + RC, as T and write the term in brackets as a product of

terms ’lllf‘j_;_zRCj”(;'fj_)_l .

4. Proof of Theorems 3 and 4. Once again, given +eC?,
let . (x) = (¢t 'x). It follows from the equivalent form (2)" of the
norm that for integer [ = 0,
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(22) lpuli S e sup |Do@)]|ul;-

Thus +r is bounded uniformly with respect to ¢, ¢t =1, as a map
from H' to itself. By duality the same is true for integers [ < 0.

LEMMA 9. Suppose pc & and @,(x) = ¢(t™x). For each integer
1=0, each t = 1, and each integer j = 1 there is a subspace H; of
H° having codimensiorn j — 1, such that

(23) el = eg7t" -t [[ullo, we H; .

The constant ¢ = ¢(l) can be chosen independent of 7 and t,t = 1.

Proof. Let £, be the cube {z||z.|<t, k=1,---,n}. We may
assume that @(x) = 0 outside 2,. Choose € &7 withgqy(E)dS = (2m)"?,

and let » be the inverse Fourier transform of . Then 7(0) = 1.
Replacing + by e ™y(¢7'x) for small enough ¢ > 0, we may assume
both that [n®)| =+ on £, and that - vanishes outside £2,. Let
7.(®) = n(t'x). For a given ¢ = 1 and « an n-tuple of integers, let
a-x = ax, la] =2 |a,], and set

e %) = (2t) " exp(t~'mi - ®), x € 2, ,
= 0, € Qt H
Ju(@) = (28) " p,(x) exp(t™ wice - x), all .

Then

(24) FE) = (/20" e(te + micy)

It follows that f, fﬁzo for a # 3, so the f, are orthogonal as elements
of H'. Let a(l), @(2), ---, be an enumeration of the n-tuples a with

la(g)] < |alf + 1)|. Let e, = e.uy, S2 = farye It follows from (24) and
(2) that

(25) el = et jall) 71 < ety

for |a| > 0, with ¢, independent of % and ¢, ¢t = 1.
Let H; be the orthogonal complement of {e¢, ¢, ---,¢;,_,} in H".
The ¢, are an orthonormal basis for L*(2,), so for any e H°,

(26) u = Jaze, on 2, 3 |a, [P = [ulff,

with a, = (u, ¢,). If ue H;,

(27) P = 97';;‘- Arep = (@tﬁ?%Z ap i -
B =¥

Since the f, are orthogonal in H~ (25}, (25}, (27) and the remarks
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preceding the lemma give (23), with ¢ independent of j and ¢, ¢ = 1.

LEMMA 10. Suppose S is bounded in H® and either

(a) [[Sull, = Mllull, all we H®
or

(b) lISull, = M|[ull all uwe H"
where 1 1is a positive integer. Suppose Pc < and P, (r) = PE7'®).
Set T, = S@, in case (a), T, = .S in case (b). Then the characteristic

numbers satisfy
(28) vi(T) < eM;~"" - ¢,

where ¢ 18 tndependent of 7 and t, t = 1.

Proof. Suppose (a). Given t =1, let H; be as in Lemma 9 and
apply (4), (23), and (a). Case (b) follows from (a) and the fact that
1Ty = p(T%).

Now consider Theorem 3. Again we may assume A = 0 and look
at A~ — B™', p a positive integer. On W,

=

A*_ B*=Y5 A4~ — BB

(29)

10
- o

RS

=3 A7 qB .

<,
i
=

Once again take p € & withe((x) =1, |2| < %, and o(x) = 0, |x| > 1,
and set o,(x) = @(t™'x). Repeated applications of Lemmas 6,7 and
8 show that

AT 0%, BT
can be written as a sum of terms of the form
(30) T.S(A70yp B™S, T, .

Here v, ne .2, T, and T, are bounded in H°, and S, and S, are
acceptable of weights s, and s, with

(31) ss=(p—3J—1m,s,=7m.

Furthermore the numbers of summands and factors are independent
of t, and the operator norms are bounded independent of ¢ > 1. Recall
also that (A7 p) is bounded in H° and pB~' is bounded from H™" to
H°.

In general, characteristic numbers satisfy

(32) /"J’k+1(s1sz e Sk) = /’tf—*-l(sl)#j-(-l(SZ) M #.1'+1(Sk) ’
(33) /"jk+1(S1 + oo + Sk) = ﬂj+1(S1) +oeee + F‘jﬂ(sk) H
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[3], Corollary X1.9.3. Also clearly £;(S) =< [|S]l.

Now write each term on the right in (29) as a sum of a term
with q@; and a term with ¢(1 — @}). Grouping the former and latter
terms together we get

(34) A®_B»=D,+E,.

Our assumptions (III), or (III); together with Lemma 1 and the fact
that (1 — ¢?) = 0 for |z| < t/2 give

(35) &, ]| = 0™,

where again the norm is the operator norm in H°. In case (III)]
this comes from (8) applied to A7'¢(l1 — ®3)'* and (7) applied to
(1 — ¢3"2qB~, while in case (III), we apply (7) to A'o(1 — #?) and
treat the terms with o and 7 as in case (III),.

Finally, (28) — (35) imply

(36) (AT — B S ot + ¢
with ¢ independent of j and ¢, ¢ = 1, and with

the extra » coming from @,qB~*. Now let ¢ = j° with b = {/n(a + I).
Then (36) becomes

(37) pi(A™ = B77) = 0(77), v = al/n(a + 1) .

As p— oo, v = v(p) — a/n. This proves Theorem 3.
Finally, under the assumptions of Theorem 4,

ti= (A +N7 = (B+N7)=00")

for Re x = )\, large enough p, and small enough ¢ > 0. Thus Jy; < o,
and (A + \)"? — (B + \)7? is a trace class operator. The conclusions
of Theorem 4 now follow from results of Kuroda and Kato; see [5],
Theorem 4.12 and Remark 4.13.
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