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Let © be the class of finite groups in which every element
is conjugate to its inverse, Tn the first section of this paper
we investigate solvable groups in ©: in particular we show
that if G€& and G is solvable then the Carter subgroup of
G is a Sylow 2-subgroup and we show that any finite solvable
group may be embedded in a solvable group in ©, In the
second section the main theorem reduces the study of super-
solvable groups in © to the study of groups in © whose
orders have the form 2*pf, p an odd prime,

NoraTioN. The notation here will be as in [1] with the addition
of the notation G = XY to mean G is a split extension of Y by X.
Also, F(G) will denote the Fitting subgroup of G and @(G) the Frat-
tini subgroup of G. We will denote the maximal normal subgroup
of G of odd order by O,(G). Further, Hol{(G) will denote the split
extension of G by its automorphism group.

If K and 7 are subgroups of G we will call K a T-group if
T < N(K) and we say K is a 7T-indecomposable T-group if K =
K, x K,, where K, and K, are T-groups, implies K, = {i)> or K, = {1).

1. Burnside [2] proved that if P is a Sylow p-subgroup of the
finite group G and if X and Y are P-invariant subsets of P which
are not conjugate in N,(P) then they are not conjugate in G. Using
Burnside’s method one may prove a similar fact about the Carter
subgroups. The proof is easy and we omit it.

LEmMA 1.1. Let C be a Carter subgroup of the solvable group G
and let A and B be subsets of C, both wormal in C. If A = B then
A and B are not conjugate in G.

THEOREM 1.1. If G is a solvable group in & then a Carter sub-
group of G is a Sylow 2-subgroup of G.

Proof. Let C be a Carter subgroup of G. If C has a nonidentity
element of odd order then C has a nonidentity central element ¢ of
odd order, since C is nilpotent. Then with A = {¢g} and B = {g7'} the
hypotheses of Lemma 1.1 are satisfied and, since 4 = B, ¢ and g
are not conjugate in G, contradicting our supposition that Ge&.
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Hence C is a 2-group. As C is self-normalizing in G, C must be a
Sylow 2-subgroup of G.

Note. This proof implies, also, that Z(C) is an elementary abeli-
an 2-group. However, the theorem of Burnside we mentioned can be
used to show that if T is a Sylow 2-subgroup of any group Ge &
(whether solvable or not) then Z(T) is elementary abelian. Thus, if
Ge® and T is a Sylow 2-subgroup of G the ascending central
series of T has elementary abelian factors.

COROLLARY 1.1. If T s a Sylow 2-subgroup of a solvable group
Ge& then N (T) = T.

Proof. By Theorem 1.1 T is a Carter subgroup of G. Carter
subgroups are self-normalizing.

COROLLARY 1.2. If G and T are as in Corollary 1.1, and if T
is abelian, then G has a nmormal 2-complement.

Proof. By Corollary 1.1 and the assumption T is abelian, T is
in the center of its normalizer. The result follows from a well-known
theorem of Burnside.

We now investigate two families of solvable groups in &.

THEOREM 1.2. If Ge& and a Sylow 2-subgroup of G 1is cyclic
then G = TK where K 1is an abelian normal subgroup of odd order
and T = <o) with o =1 and g* = g~ for all ge K.

Proof. As G has a cyclic Sylow 2-subgroup, G is solvable. By
Corollary 1.2 G = TK, T = {a) is a Sylow 2-subgroup of G and K is
a normal subgroup of odd order. By the Note after Theorem 1.1,
o =1. If « did not induce a fixed-point-free automorphism of K
then Co(T) N K=2<{1), so Ni(T)=2 T, contradicting Corollary 1.1. Thus
g — g° is a fixed-point-free automorphism of K. It is known that if
K has a fixed-point-free automorphism « of order 2 then afk) =k
for all ke K and hence K is abelian.

THEOREM 1.3. Let G be a finite solvable group in & and suppose
a Sylow 2-subgroup T of G has order 4. Then T 1is elementary abelian,
G has a normal 2-complement K, and K 1is wnilpotent.

Proof. As G is solvable, Corollary 1.1 and 1.2 imply that G =
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TK where |T| =4 and K is a normal subgroup of odd order. The
Note after Theorem 1.1 implies T is elementary, say T = {a) x {&).
Let K, and K, denote the set of fixed points of the automorphisms of K
induced by « and g respectively. Then (1> = Cx(T) =2 K.N K;. Hence,
as T is abelian, K, is g-invariant and B induces a fixed-point free auto-
morphism of K,. Thus K, is abelian. Then, by [4], K" is nilpotent.

Finally, we show that any finite solvable group can be embedded
in a solvable group in &. We shall need the following lemma.

LEMMA 1.2. Let Ge® and let {x> be a cyclic group of order p,
where p 1s an odd prime. Let a be an involution and define H =
(Gulx), e, where x* = " and b* = b for all be G. Then He .

Proof. Let K=G x G* X +++ X G**" be the base subgroup of
Gwlxy. Then Ke®& since Ge&. Suppose h, € H and

2P~ 1L

h1 = 2", 97 * * Op—1
where » % 0(p). Writing [j] for 7 we may write
hy = @ go- gt - -+ gl
Now, if ge G then (¢g')*" = g+ implies that
(g[i])—1x—rg[i]xa- — (g[i])—1g[i+r] ,

and hence (gt*)~'z7gl? = x7(gt**) ¢!, Thus if ,6’ = gt~"1 then (x7)? =
a (g ) g, ). Writing A = a7 f-fF -« fLE0Y, where fieG
for all 4, we see that f,, =g, if 1% e, e— 1 while f,, = 1. Thus
first changing the rightmost ¢! in &, to 1 by conjugation and pro-
ceeding to the left we may conjugate h, to an element » = g, where
ge G = G,

Pick aeG such that ¢° =g and let w = aa®---a**". Then
with v = auxz~ we have k' = h~'. It remains to consider elements
of H of the form 2 = a-2"-g,-¢"" --- gi*74, where [j] denotes x/. If
r %= 0 (p) then let ¢ be an integer such that 2¢ = —7(p). Then £
conjugated by xz° has the form ayy!" --- >3 where the y; e G.

We now exploit the fact that, since z* = z~' and ¢g* = ¢ for all
geG = G, gl = (ghl)e, gir5¥ = (g}2,)%, ete. Thus

@ = a(gzt,)P (g, )Y,
where v(p — 1) = ¢}d,. Performing this ecomputation for
A//(p - 1); ’Y(p - 2)’ Y 7((2? + 1)/2) ’

where v(e) = ¢g'»~! and observing that w = v(p — 1) «+- v((p + 1)/2)
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has the identity in G'! as its ¢-th component for ¢ > ((p + 1)/2) we
see that A* has the form A&, = a-f,-fi .-« fI'1 where » = (p — 1)/2
and f; € G for all . Then A7' = a-fi - (/i -+« (£, Now for
all =0, .-+, r pick a;,¢G such that f* = f;" and let v = g,-v-v*
where v = a7 -+ al”l. Taking = = ua it is easy to see that Af = &?,
using the fact that (vv*, @) = (g,, ¥v*) = 1. This disposes of all cases.

Theorem 1.4. If G is a finite solvable group them there exists a
solvable group L eSS and a monomorphism 7: G — L.

Proof. If G is abelian let L = (G, &> where o* =1 and ¢g* = g
for all ge G. Then in L every element of G is conjugate to its in-
verse and all other elements lie in the coset Ga which consists of
involutions, so L ¢ & and L is solvable. Hence the theorem is true
for all abelian groups G. Induct on |G| and assume it is true for
all solvable groups of order less than the order of G. Now let H< G
such that [G: H] = p, p a prime. Our induction hypothesis says there
is a solvable Ke & and a monomorphism of HwC, into KwC,, where
C, is cyclic of order p. By Satz 15.9 [3] (Chapter I} there is a mono-
morphism of G into HwC,, so & may be imbedded in KwC,. If p =
2 then by Theorem 1.1 of [1] KwC,e &, and it is solvable since K
is. If p > 2 then by Lemma 1.2 KwC, has a solvable extension
(KwC,, aye@.

Thus, in this case as well, G may be imbedded in a solvable group
in &.

This concludes our investigation of solvable groups in &.

2. In 81 we showed that if Ge®& is a solvable group with an
abelian Sylow 2-subgroup T then 7 has a normal complement in G.
Of course, if G is supersolvable then (by the Sylow Tower Theorem)
T has a normal complement K, regardless whether 7T is abelian or
Ge®, If we assume that Ge &, where G is supersolvable, then with
the above notation we assert.

THEOREM 2.1. The Sylow 2-subgroup T s in &, and K and &(T)
are contained in F(G).

Proof. That Te® was remarked in [1]. Since G is supersolvable
GV < F(G). Now Ge® implies G/G" €& and since G/G" is abelian
G/GY is an elementary abelian 2-group. Thus @(T) < G", and since
2, | K))=1, K< G".

REMARK. If Ge® is supersolvable Theorem 2.1 implies G is a
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split extension of a nilpotent group K by a two-group 7' in &. If S
is a Sylow 2-subgroup of F(G) then S<|G, so G/Se€&. But by
Theorem 2.1 G/S is isomorphic to a split extension KK of the nilpotent
group K by an elementary abelian two-group K. Thus given a
supersolvable G in & there exists a supersolvable G*e¢ & such that
0y, (G*) = O,, (G) but G* has an elementary abelian Sylow 2-subgroup.

Now let G = TKc& be given, where G is supersolvable and T
and K are as above. Let P, ---, P, be the Sylow subgroups of K,
so K=P, X -+ X P,. If &, is the projection of K onto P; let H;, =
ker (w;). Then H;[>G and G/H;, = TP;, a split extension of P; by T
which is supersolvable and in &. We have now reduced the study
of supersolvable groups in & to two questions:

(1) Given a 2-group Te¢® and a p-group P (p an odd prime)
find the split extensions TP of P by 7 which are supersolvable and
in &.

(2) Given split extensions TP, ---, TP, of P,-groups by T (where
the p; are distinct odd primes) which are supersolvable and in &,
when is TP,A TP, A -+ ATP,c&? (For a definition 'of the symbol
A see [3], Satz 9.11.)

The answer to (2) is not “Always.” For example let

TPl = <CU, Y, a, b>

where {x, y> is the non-abelian group of order 27 and exponent 3,
{a, by is the four-group, and (v, a) =@, (x, b) =1, {y, ¢) =1, (y, b) = .
Let TP, = {u, v, a, by where {u, v) is the nonabelian group of order
125 and exponent & with (u, a) = u, (4,0) =1, {v,a) =1, (v, b) = ».
Then TP, and TP, are supersolvable and in &, but TP, A TP, ¢ S.
The next theorem answers (1) when 7T and P are abelian. It
may be used to show that for certain P no T exists such that TPc&.

THEOREM 2.2. If G = TXK is a group in & such that K is abelian
of odd order (K <]G) and T is an abelian two-group then T is element-
ary and we may pick a basis x,, «-+, 2, for K and a basis a, B, *++, Bu
for T such that xf = x7* for all 1 =1, «+--, n and z)i = xF* for all 1, ].
Conversely any such group is in &.

Proof. Since G/X = T, Te&. Being abelian T must be element-
ary. Since K is a finite T-group we may write X = K, X -+« X K,
where each K; is a T-indecomposable T-group. Now pick any ve T.
Since |v]| £ 2 and K, is abelian of odd order, X; = I, x F, where

I, ={zxe Ko =27} and F,={xeK;|2" = x}.
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(For clearly K; = I, X F,. For any z€ K, let z = za" and w = z(z™)".
Observe that ze F',, we I, and #* = zw. Since 2*c I x F, and K, has
odd order, zel, x F,. Thus K, =1, x F,.) Since T is abelian and
K; is a T-group, I, and F, are also T-groups. But K, is 7T-indecom-
posable so I, = (1) or F, = (1>. This means that each ve T either
inverts every element of K, or fixes every element of K;. Hence in
any decomposition of K; as a direct product of cyclic groups each
direct factor is a T-group. As K; is T-indecomposable we conclude
K, is cyclic. Let K; = {x;,>. Because Ge & there exists ae T such
that (x, «--x,)* = 2" --- 2;'. Hence xf = x;* for all 7 and therefore
z* = o~ for all xe K. Now let @, 8, --+, B, be a basis of 7, where
« is as above. We found that for an arbitrary ve T and an arbitrary
xeK;,, ® =2 or o = x~'. Hence for each j and ¢, «ji = x;, where
e= +1.

Conversely, if G = TK is as in the conclusion of the theorem
then ge G either has the form «¢ --- 2:» (which is conjugated to its
inverse by @) or the form vz ... @, with ve€ T. In this case it is
easy to see that ¢ = ¢!, where g8 = va.

As an example of how this theorem might be applied we shall
show that if P = (x, y|a*"' = y?» = 1, «¥ = 2'**"""), where p is an odd
prime and 7 = 3, then there is no two-group T and supersolvable ex-
tension TP such that TP &. For suppose there were such a T, with
TPec&. We may assume, by previous remarks, that T is elementary
abelian. Then TP/®(P) € © and by the foregoing theorem there exists
a € T such that z* = x~'2** and y* = y~w**. Then

(xy)a — (xl+p'”~2)a — .,L.-q_pn*prk

while (29" = (x~'2?)*™" = (x~)* 'gr* = g+P" g%, Since (2Y)* = (x)*"
we conclude that a—*"° = 2*"°. Therefore #**"° =1, contradicting
the supposition that p is odd. Hence no such G exists.

3. We now give an example of a solvable group satisfying the
hypotheses of Theorem 1.3 which does not have a nilpotent normal
2-complement. Thus the second assertion of Theorem 2.1 does not
generalize to solvable groups with a normal 2-complement. Let

H={n,yzldr =y ==L =0, =2,y =1y,
so H = Hol (C,), where C, is a cyclic group of order 7. Let
C,=<ulw =1y

and define K = HwC,. In Klet a=2,b = 2% ¢ = y¥)*, d = 2% e =
u, and consider the subgroup G = <a, b, ¢, d, ). Then G has defining
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relations a' =" = =d*=¢=1,(a,b) = (¢,d) = (d,e) = 1, a’* = a7,
bl =b"" a°=a? b =0 ¢ =c, and a* = b.

Consider the subgroup <a, b, d, ¢>. Elements of the form ea’d?,
a’b?, da'd’, and eda’d’ are conjugated to their inverses by, respectively,?
a’dea, d, 1 and e. We may now consider elements c‘e’d’a*d™, ¢ = 1.
Such an element is always conjugate to an element of the form!
ce'dia*d™. Now ceda™d™ and cea*d™ are conjugated to their inverses
by ce and ced respectively. Finally ca*d™ and eda*d™ are conjugated
to their inverses by a*b*™ea~*b—"" and a*b‘"ea**b—*™ respectively.

This completes the proof that Ge&. Notice G satisfies the hy-
potheses of Theorem 1.3 but the normal 2-complement K = {a, b, ¢)
is not nilpotent. In fact F(K) = K",
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