Pacific Journal of Mathematics

MULTIPLIERS AND UNCONDITIONAL CONVERGENCE OF BIORTHOGONAL EXPANSIONS

WILLIAM JAY DAVIS, DAVID WILLIAM DEAN AND IVAN SINGER

Vol. 37, No. 1

January 1971

MULTIPLIERS AND UNCONDITIONAL CONVERGENCE OF BIORTHOGONAL EXPANSIONS

W. J. DAVIS, D. W. DEAN AND I. SINGER

We solve in the affirmative a problem raised by B. S. Mityagin in 1961, namely, we prove that if (x_n, f_n) is a biorthogonal system for a Banach space E with (f_n) total over E, such that the set of multipliers $M(E, (x_n, f_n))$ contains all sequences (ε_i) with $\varepsilon_i = \pm 1$ for each i, then (x_n) is an unconditional basis for E.

Let *E* be a Banach space, and let (x_n, f_n) be a biorthogonal system for *E* (i.e., $(x_n) \subset E$, $(f_n) \subset E^*$ and $f_n(x_m) = \delta_{nm}$) which has (f_n) total over *E* (i.e., $f_n(x) = 0$ for all *n* implies x = 0). A scalar sequence (γ_n) is called a *multiplier* of an element *x* in *E* with respect to (x_n, f_n) (write $(\gamma_n) \in M(x, (x_n, f_n))$) if there is an element *y* of *E* such that $f_n(y) = \gamma_n f_n(x)$ for all *n* (call this element $x_{(\tau_n)}$). The set of multipliers for *E* with respect to (x_n, f_n) is

$$M(E, (x_n, f_n)) = \cap \{M(x, (x_n, f_n)) \mid x \in E\}.$$

Here we consider the following two problems:

P1: (Mityagin [6], Kadec-Pelczynski [4], Pelczynski [7]). Let E be separable and suppose that $M(E, (x_n, f_n))$ contains all sequences (ε_i) with $\varepsilon_i = \pm 1$ for each i. Is (x_n) an unconditional basis for E?

P 2: (Kadec-Pelczynski [4]). Let E be separable and suppose $M(x, (x_n, f_n))$ contains all sequences (ε_i) with $\varepsilon_i = \pm 1$ for each *i*. Does the formal expansion $\sum_n f_n(x)x_n$ converge unconditionally to x?

Problem 2 (and hence also problem 1) is known to have an affirmative answer in the following cases [4]:

1°. $M(x, (x_n, f_n)) \supset m$ (the space of bounded sequences).

 2° . *E* contains no subspace isomorphic to c_0 (the space of sequences converging to 0) and $M(x, (x_n, f_n)) \supset c_0$.

3°. $sp(f_n)$ (= linear span of (f_n)) is norming (i.e.,

$$|x| = \sup \{ |f(x)| | f \in sp(f_n), ||f|| \le 1 \}$$

defines a norm on E equivalent to the original norm on E).

Problem 1 is known to have an affirmative answer in the case when $[x_n] = E$, where $[x_n]$ denotes the closed linear span of $\{x_n\}$ ([5]; see also [1], Theorem 3.4, implication $(4) \Rightarrow (3)$).

In the present paper we give an affirmative solution for problem

1. Our method also provides a more elementary proof of 3° than that given in [4].

THEOREM 1. Let E be a separable Banach space and let (x_n, f_n) be a biorthogonal system for E with (f_n) total over E. If $M(E, (x_n, f_n))$ contains all sequences (ε_i) with $\varepsilon_i = \pm 1$ for each i, then (x_n) is an unconditional basis for E.

If the hypothesis $[x_n] = E$ is added then a much simpler proof of the theorem is obtained (see the Remark following Lemma 3 below).

LEMMA 1. $M(E, (x_n, f_n)) \supset \{(\varepsilon_i) | \varepsilon_i = \pm 1 \text{ for all } i\}$ if and only if $M(E, (x_n, f_n)) \supset \{(\varepsilon_i) | \varepsilon_i = 0 \text{ or } 1 \text{ for all } i\}.$

Proof. Obvious.

LEMMA 2. Suppose $(\varepsilon_i) \in M(E, (x_n, f_n))$, where $\varepsilon_i = 0$ or 1 for all i and define $S_{(\varepsilon_i)} = E \rightarrow E$ by

$$(1)$$
 $S_{\scriptscriptstyle(\varepsilon_i)}(x) = x_{\scriptscriptstyle(\varepsilon_i)}$ $(x \in E)$.

Then $S_{(\varepsilon_i)}$ is a continuous linear mapping.

Lemma 2 is well known (see e.g. [8]).

In the particular case when $\varepsilon_i = 1$ for $i = 1, \dots, n$ and $\varepsilon_i = 0$ $i = n + 1, n + 2, \dots$ we shall use for $S_{(\varepsilon_i)}$ the notation S_n . Obviously,

(2)
$$S_n(x) = \sum_{i=1}^n f_i(x) x_i$$
 $(x \in E, n = 1, 2, \dots)$.

If σ is a subset of the positive integers, we define the mapping $S_{\sigma}: E \to E$ by

 $(3) S_{\sigma} = S_{(\varepsilon_i)},$

where $\varepsilon_i = 1$ for $i \in \sigma$ and $\varepsilon_i = 0$ for $i \notin \sigma$.

LEMMA 3. Let (x_n, f_n) be a biorthogonal system for E (not necessarily separable), with (f_n) total over E. If $M(E, (x_n, f_n))$ contains all sequences (ε_i) with $\varepsilon_i = \pm 1$ for all i, then $(||S_n||)$ is bounded.

Consequently, (x_n) is an unconditional basic sequence (i.e., an unconditional basis of its closed linear span $[x_n]$) and hence, if $[x_n] = E$, then (x_n) is an unconditional basis of E.

Proof. Assume that $(||S_n||)$ is unbounded. Let (n_k) be an increasing sequence of integers such that $||S_{n_k}|| \ge 2^k + ||S_{n_{k-1}}||$, whence

 $||S_{n_k} - S_{n_{k-1}}|| \to \infty$. Let $(M_p; p = 1, 2, \cdots)$ be a countable collection of pairwise disjoint, infinite subsets of the positive integers, $I_k = \{n_{k-1} + 1, \cdots, n_k\}$, and $\sigma_p = \bigcup_{k \in M_p} I_k$. The projection S_{σ_p} is continuous by Lemma 2. Moreover, if k is in M_p and x is in E, we have

$$egin{aligned} &\|(S_{n_k}-S_{n_{k-1}})x\|\| = \Big\|\sum_{i=n_{k-1}+1}^{n_k}f_i(x)x_i\Big\| = \Big\|\sum_{i=n_{k-1}+1}^{n_k}f_i(S_{\sigma_p}x)x_i\Big\| \ &= \|S_{n_k}-S_{n_{k-1}})S_{\sigma_p}x\| \leq \|S_{n_k}-S_{n_{k-1}}\|_{X_p}\|S_{\sigma_p}\|\|x\| \ \end{aligned}$$

where

$$X_p = \{x \in E \,|\, f_j(x) = 0 \quad ext{if} \quad j
ot\in \sigma_p\} \,.$$

It follows that $||S_{n_k} - S_{n_{k-1}}||_{X_p}$ is unbounded as k runs through M_p . Choose $u_p \in X_p$, $k_p \in M_p$ such that $||u_p|| \leq 2^{-p}$ and $||(S_{n_{k_p}} - S_{n_{k_p}})u_p|| \geq 1$. Let $\sigma = \bigcup_{p=1}^{\infty} I_{k_p}$. Now $\sigma \cap \sigma_p = I_{k_p}$ so that if $y_p \in X_p$ then $f_i(S_\sigma y_p) = f_i[(S_{n_{k_p}} - S_{n_{k_p}})y_p]$ for all i, whence $S_\sigma y_p = (S_{n_{k_p}} - S_{n_{k_p}})y_p$. Thus $\sum_p u_p$ converges while $S_\sigma(\sum_p u_p) = \sum_p S_\sigma(u_p) = \sum_p (S_{n_{k_p}} - S_{n_{k_p}})u_p$ doesn't converge, contradicting Lemma 2, that S_σ is continuous. Thus (x_n) is [2] a basic sequence. Since the same argument remains valid for every permutation $(x_{\rho(n)})$ of (x_n) , it follows that (x_n) is an unconditional basic sequence, which completes the proof.

REMARK. One can give a much simpler proof of the fact that under the hypotheses of Lemma 3 we have

$$(4) \qquad \qquad \sup_n ||S_n|_{[x_j]}|| < \infty ,$$

whence (x_n) is an unconditional basic sequence (and, if $[x_n] = E$, then (x_n) is an unconditional basis of E). Indeed, if (4) does not hold, then there exist increasing sequences of positive integers $(p_n), (q_n)$ with $p_{n-1} + 1 \leq q_{n-1} + 1 \leq p_n \ (n = 1, 2, \dots; p_0 = q_0 = 0)$ and a sequence (u_n) with $u_n \in [x_{q_{n-1}+1}, \dots, x_{q_n}]$ $(n = 1, 2, \dots)$ such that $||S_{p_n}u_n|| = 1$, $||u_n|| \leq 1/2^n \ (n = 1, 2, \dots)$, whence $(\sum_{j=1}^n u_j)$ is convergent, but for $\sigma = \{1, \dots, p_1, q_1 + 1, \dots, p_2, \dots\}$ the sequence $(S_{\sigma}(\sum_{j=1}^n u_j)) = (\sum_{j=1}^n S_{p_j}u_j)$ is not convergent. Thus, S_{σ} is not continuous, which contradicts Lemma 2, completing the proof.

Proof of Theorem 1. We prove that $S_n x \to x$ for each x in E. This will prove the theorem by noting that the same proof works to show that each permutation of (x_n) is a basis for E, so that (x_n) is an unconditional basis for E. Choose x in E such that $(S_n x)$ does not converge (if it converges, its limit must be x by totality of the sequence (f_n)). Let (n_k) , (m_k) be sequences of integers such that $m_k + 1 \leq n_k \leq m_{k+1}$ for all k and such that there is $\varepsilon > 0$ with $\varepsilon < ||S_{n_k} - S_{m_k})x||$ for all k. Let $u_k = (S_{n_k} - S_{m_k})x = \sum_{i=m_{k+1}}^{n_k} f_i(x)x_i$. For each sequence (γ_i) such that $\gamma_i = 1$ or 0 for each i there is an element of E, denoted here by $\Sigma \eta_i u_i$, such that $(S_{n_k} - S_{m_k})(\Sigma \eta_i u_i) = \eta_k u_k$ for every $k(\Sigma \eta_i u_i)$ is $x_{(\varepsilon_j)}$ where $\varepsilon_j = \eta_k$ for $m_k + 1 \leq j \leq n_k$, $k = 1, 2, \cdots$ and 0 for the other j). Since E is separable, and since the set $\{\Sigma \eta_i u_i | \eta_i = 1 \text{ or } 0\}$ in E is uncountable, there is a sequence $(y_n)_0^{\circ\circ}$ with $y_n = \Sigma \eta_i^{(n)} u_i$ such that $y_n \neq y_m$ if $n \neq m$ and $y_n \rightarrow y_0 = \Sigma \eta_i^{(0)} u_i$. Let K be a bound on $||(S_{n_k} - S_{m_k})||$ as guaranteed by Lemma 3. Then for p large, and all $k, ||(S_{n_k} - S_{m_k})(y_p - y_0)|| \leq K ||y_p - y_0|| < \varepsilon$, but

$$(S_{n_k}-S_{m_k})({y}_p-{y}_{\scriptscriptstyle 0})=(\eta_k^{\scriptscriptstyle (p)}-\eta_k^{\scriptscriptstyle (0)})u_k$$
 ,

whence

$$||(S_{n_k}-S_{m_k})(y_p-y_0)|| = egin{cases} 0 & ext{if} & \eta_k^{(p)} = \eta_k^{(0)} \ ||u_k|| \, ||\eta_k^{(p)}-\eta_k^{(0)}| = ||u_k|| & ext{otherwise}. \end{cases}$$

Since $y_p \neq y_0$ for all $p \neq 0$, there is a k = k(p) for which

$$||(S_{n_k}-S_{m_k})(y_p-y_0)||=||u_k||>arepsilon$$
 ,

which is impossible for large p. Therefore $S_n x \to x$, which completes the proof of Theorem 1.

REMARK. Using the same method, one can also give a more elementary proof of the result 3° mentioned in the Introduction (actually, of a slightly more general result), than that given in [4]. As above, it is sufficient to show that $(S_n x)$ converges. If not, let $(n_k), (m_k), \varepsilon > 0$ and (u_k) be as in the above proof. Since $sp(f_n)$ is norming, by a technique of [3], or, equivalently, by [4], p. 311, lemma and p. 317, Lemma 5, we may assume (dropping to subsequences of (n_k) and (m_k) if necessary) that the natural projection P_k of $[x_1, \cdots, x_{n_k}] \oplus [f_1, \cdots, f_{m_{k+1}}]_{\perp}$ onto $[x_1, \cdots, x_{n_k}]$ is of norm $||P_k|| \leq C$, where C > 1 is a constant independent of k (actually, only this projection property is used in the sequel and therefore we obtain a slightly more general result than 3°). As in the above proof of Theorem 1 there is an element of E, denoted by $\Sigma \eta_i u_i$, which is in each of the subspaces $[x_1, \dots, x_{n_k}] \oplus [f_1, \dots, f_{m_{k+1}}]_{\perp}$, such that $(P_k - P_{k-1})(\Sigma \eta_i u_i) = \eta_k u_k$. The proof is completed in precisely the same manner as before, where now $P_k - P_{k-1}$ take the role of $S_{n_k} - S_{m_k}$.

Note. After this work had been completed, we have learned of the recent paper of G. F. Bachelis and H. P. Rosenthal "On unconditionally converging series and biorthogonal systems in a Banach space" (to appear in Pacific J. Math), where Problem 2 (and hence also Problem 1) is solved, even with the hypothesis "Let E be separable" replaced by the weaker hypothesis "Let E contain no subspace isomorphic to m". However, our methods are completely different and use more elementary tools.

References

1. G. F. Bachelis, Homomorphisms of annihilator Banach algebras, Pacific J. Math., 25 (1968), 229-247.

2. M. M. Day, Normed Linear Spaces, Springer-Verlag, 1962.

3. _____, On the basis problem in normed spaces, Proc. Amer. Math. Soc., 13 (1962), 655-658.

4. M. I. Kadec and A. Pelczynski, *Basic sequences, biorthogonal systems and norming sets in Banach and Frechet spaces*, Studia Math. **25** (1965), 297-323 (Russian).

5. E. R. Lorch, Bicontinuous linear transformations in certain vector spaces, Bull. Amer. Math. Soc., 45 (1939), 564-569.

6. B. S. Mityagin, Approximative dimension and bases in nuclear spaces, Uspehi Matem. Nauk. 16, 4(100) (1961), 63-132 (Russian).

7. A. Pelczynski, Some problems in functional analysis, Lecture notes, L.S.U. (1966).

8. S. Yamazaki, Normed rings and unconditional bases in Banach spaces, Sci. Pap. Coll. Gen. Educ. Univ. Tokyo, 14 (1964), 1-10.

Received April 3, 1970. The first two authors were supported in part by NSF grants GP-14021 and GP-6023, respectively. The third author was on leave from the Institute of Mathematics of the Romanian Academy of Sciences, Bucharest.

Ohio State University and Institute of Mathematics of the Academy, Bucharest

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON Stanford University Stanford, California 94305

C. R. HOBBY University of Washington Seattle, Washington 98105 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H

B. H. NEUMANN F. WOLF

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA	STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY	UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA	UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY	WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA	UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY	* * *
OREGON STATE UNIVERSITY	AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON	CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY	TRW SYSTEMS
UNIVERSITY OF SOUTHERN CALIFORNIA	NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics Vol. 37, No. 1 January, 1971

Gregory Frank Bachelis and Haskell Paul Rosenthal, On unconditionally	
converging series and biorthogonal systems in a Banach space	1
Richard William Beals, On spectral theory and scattering for elliptic	
operators with singular potentials	7
J. Lennart (John) Berggren, Solvable and supersolvable groups in which every	
element is conjugate to its inverse	
Lindsay Nathan Childs, On covering spaces and Galois extensions	29
William Jay Davis, David William Dean and Ivan Singer, Multipliers and	
unconditional convergence of biorthogonal expansions	35
Leroy John Derr, <i>Triangular matrices with the isoclinal property</i>	41
Paul Erdős, Robert James McEliece and Herbert Taylor, Ramsey bounds for	
graph products	45
Edward Graham Evans, Jr., On epimorphisms to finitely generated	
modules	47
Hector O. Fattorini, <i>The abstract Goursat problem</i>	51
Robert Dutton Fray and David Paul Roselle, <i>Weighted lattice paths</i>	85
Thomas L. Goulding and Augusto H. Ortiz, <i>Structure of semiprime</i> (p, q)	
radicals	97
E. W. Johnson and J. P. Lediaev, Structure of Noether lattices with	
join-principal maximal elements	101
David Samuel Kinderlehrer, <i>The regularity of minimal surfaces defined over</i>	
slit domains	109
Alistair H. Lachlan, <i>The transcendental rank of a theory</i>	119
Frank David Lesley, <i>Differentiability of minimal surfaces at the boundary</i>	123
Wolfgang Liebert, <i>Characterization of the endomorphism rings of divisible</i>	
torsion modules and reduced complete torsion-free modules over	
complete discrete valuation rings	141
Lawrence Carlton Moore, <i>Strictly increasing Riesz norms</i> .	171
Raymond Moos Redheffer. An inequality for the Hilbert transform	181
James Ted Rogers Ir Mapping solenoids onto strongly self-entwined	
circle-like continua	213
Sherman K Stein <i>B</i> -sets and planar maps	217
Darrell R. Turnidge, Torsion theories and rings of quotients of Morita	217
equivalent rings	225
Fred Listing The Hausdorff means of double Fourier series and the principle	223
of localization	235
Stanley Joseph Wertheimer, Quasi-compactness and decompositions for	235
arbitrary relations	253
Howard Henry Wicke and John Mays Worrell Ir. On the open continuous	235
images of paracompact Čech complete spaces	265
images of paracompact Cech complete spaces	205