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Consider the system 7V, of n X n, lower {triangular
matrices over the real numbers with the usual operations
of addition, multiplication and scalar multiplication and with
the additional property that a;i:,;:;1 = ai,; (isoclinal), It is
shown that V,, is a commutative vector algebra. The principal
theorem (§ 3) establishes the existence of an algebraic mapping
of V, into a ring of rational functions. This mapping
associates a special set of basis elements in V, with the
clagsically known Eulerian Polynomials.

Some properties of the space V, are outlined in §2. Section 4
gives an application of the main theorem to a problem which motivated
this study, namely, the inversion of certain matrices in V, for
arbitrary dimension #. The matrices with first columns [1™, 2™, «.., "],
m=0,1,2, .-, are considered in particular.

2. Properties.

2.1. Nomenclature. A matrix A = {a,;,} is called isoclinal if
Giri,41 = @;,; for all values of the indices permitted. Further we
designate by V, the class of %= x n lower-triangular, isoclinal (L.T.I.)
matrices (over the reals).

REMARK. The isoclinal property has appeared in studies of com-
mutativity, under other names; for example see [4].

THEOREM 2.2. The class V, is a commutative sub-ring of matrices.
Further, if Ae V, is nonsingular then A7'c V,.

Proof. A simple computation using the L.T.I. property will
show multiplicative closure. Now, for 4, Be V, let {a;}, {b;} be the
elements of their first columns; these clearly define the matrices.
The first column of AB is given by the Cauchy Product formula
Sk aby_jyy, for k=12 .. m, which is commutative. Finally, if
A e V, is nonsingular then its diagonal element a, = 0 and the system
ax, =1, 3., a;x,_;., = 0 is solvable. Hence Xe V, and X = A7

The algebra of V, is closely allied to that of the polynomials
over the reals, P(Y). Let Ac V, be given by its first column {a;}.
Define ¢,: V,— P(Y) as the injection, ¢,(4) = 3%, a; Y and let
7w, P(Y)— V, be the projection. We then have:
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COROLLARY 2.3.

(1) =, is a ring homomorphism onto, with kernel the principal
ideal generated by Y.

(ii) m.8, is the identity and 7.{¢,(A)¢.(B)} = AB.

Finally we note the useful operating rule for L.T.I. matrices
that the product Az, where z is a vector, is equivalent to AX where
X is the L.T.I. matrix with first column z.

3. A Mapping of V, by means of Eulerian Polynomials.

3.1. Definitions and Nomenclature. (1). The FEulerian Poly-
nomials A,,(A) may be defined recursively, with A,\) = 1, by:

Apo(V) = (14 mVA,0) + M1 — V)ALO)

(ii) Let M, e V, be defined, (giving the matrices’ first columns),
by:

Mm,,=@a"2™ «... nm) for m=0,1,2, -+ .

(iii) Let M,(\) = >, p™-ar7, for N[ <1 and m =0,1, ---.
(iv) Let R = {P(\)/Q(\)} be the sub-ring of rational functions
such that Q(0) == 0.

3.2. Assertion. (i) The matrices M,,, constitute a basis for
Voym=0,1, «oo,n — 1.

(ii) M,\) = A,.\)/A — M)"+e R.

The second part of the assertion may be easily proved by noting
the recursion M, .,(\) = d(xM,,(\)}/dr. The Eulerian Polynomials and
rational functions closely related to the M, (\) were used by Frobenius
[2] in studies of Bernoulli numbers; a further exposition of their
properties has been given by Carlitz [1] and they have been used by
Riordan [3] in combinatorial analysis. The inversion of the matrices
M, . was the author’s original problem and will be discussed in the
next section. Now, using the above notations and definitions, we
give the following algebraic mapping theorem.

THEOREM 3.3. In the following diagram:

v, I R R Iy,
Sf. is defined by identifying the basis elements of V,, f.(M,.,.) =
M,\) e R. h, is the natural homomorphism with kernel, K(h,), the
principal ideal generated by A*. Then, there exists a ring isomorphism



TRIANGULAR MATRICES WITH THE ISOCLINAL PROPERTY 43
Jn such that j,h.(M,.(\) = M,,,..

Proof. We first note that an element v of the ring R/{\") has
a unique antecedent in R of the form >)r_,, a,A*~'. This enables us
immediately to define j, as an additive isomorphism onto by j.(v) =
(a,, a3, +++, a,)€ V,. The product of two elements in R/{\") can be
expressed as >*_,, ¢c,A*"' + K(h,) where the ¢, are formed by Cauchy
Products of the unique antecedents. This gives a ring isomorphism
since the multiplication in V, is also Cauchy Product, truncated to =
components.

The conclusion j,h,(M,(\) = 7.k, 2™\ = M,,,, follows at
once by noting M,(\) = D%, "V 4+ D54, ™AL Other im-
mediate consequences are:

COROLLARY 3.4. (i) f, is one-to-one and j,h,f, is the identity.
(ii) J.h{fa(4)-fu(B)} = AB.

4. Application. By making use of the previous theorem:
My = 7. {1 — )"k {1/A,. (N} = BC.

The matrix B is given by its first column (b, ++-, b,) wWhere b, =

(—1)i‘1?;j11) if 9 <m+2 and b, =0 if 7> m + 2. The nonzero

components for C e V, are also finite in extent, being the coefficients of
the Eulerian Polynomial 4, (\). These are known explicitly: A(m, k)=

b (=D + 1)’"(2 f 31-), k=0,1,---,m — 1. The problem is then
reduced to finding C—' which may be expressed in terms of a re-
cursion on the A(m, k). For m = 0,1, 2 the solutions are trivial.
For m = 3 the n'* component, ¢,, of C'is ¢, = U,(—2) (Chebyshev
polynomials of the second kind). These are readily given in explicit
form.
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