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Serre’s theorem on projective modules says roughly that
if a projective R module is big enough it can map onto R.
Forster and Swan discuss how big a free module is needed
to map onto a given finitely generated module. This note
examines a common generalization of these results and
extends Swan’s technique,

This paper follows Swan [5]. The reader is urged to refer to
Swan for a more complete exposition of some of the ideas. The
author is also in debt to Professor Kaplansky whose unpublished
exposition of Swan’s result [2] isolated one of the ideas for this paper.

Throughout the paper R will be a commutative ring with identity
whose maximal ideal spectrum is a noetherian space and 4 is an R
algebra which is a finitely generated R module. Following Swan we
define J-Spec(R) to be the set of all prime ideals of R which are
intersection of maximal ideas with topology the subspace topology
inherited from Spec(R). If M is a finitely generated R module, then
for each pe J-Spec(R) we define b(p, M) =0 if M, = 0 and

bp, M) =r +d

where 7 = dim g, , (M/pM), and d = dim J-Spec(R/p) otherwise. We
also call an element x € M, basic if it will serve as part of a set of
generators with the minimal number of elements, i.e., if M,/R,x
requires fewer generators than M,.

THEOREM 1. R a commutative ring with J-Spec(R) a mostherian
space M a finitely generated R wmodule and P a finitely generated
projective R module with rank (P) = max b(p, M). Then there exists
an epimorphism from P to M.

Proof. We might as well assume that M is faithful. For if
a = ann{M), then we pass to P/aP which is projective over R/a with
rank at least as large. Then if p is a minimal prime in J-Spec(R)
such that a chain of maximal length of primes in J-Spec(R) passes
through p, M, # 0 since otherwise there would exist an se R — p with
sM = 0 contrary to M being faithful. Hence dimg,, =1. Thus
rank (P) = d + 1 where d = dim J-Spec(R) = dim M-spec(R). Hence
by Serre’s theorem P = R P’. We define an epimorphism f from
P to M by f((1, 0)) = m where m is an element of M which is basic
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at all p’ such that b(p’, M) is maximal. (See Swan [5, p 320] or
below for details.) Then Max(b(p, M/(m))) is one less. Hence P’ maps
onto M/(m) by induction. P’ is projective. Hence that map lifts to
g: P'— M. Let f((0,x)) = g(x). Then f is clearly an epimorphism as
desired.

REMARKS. This, of course, extends to the case of P and M being
finitely generated 4 modules since both Serre’s and Swan’s theorems
are true in that case also. See [4, Theorem 11. 2 p. 171] and [5,
Theorem 2, p. 320].

COROLLARY 2. R as above P a projective R module of rank
= r + d where d = dim J-Spec(R). Q any projective of rank r. Then
P is isomorphic to PP Q.

Proof. Clear.

THEOREM 3. R commutative with J-Spec(R) a noetherian space.
M a finitely generated R module. N any R module such that a direct
sum of some number of copies (finite will of course suffice) of N maps
onto M. Then if n = max b(p, M) a direct sum of m copies of N
will map onto M.

Proof. The key result needed from Swan is [5, p. 320 remark
after Proposition 3] which states that the number of primes where
b(p, M) is maximum is finite.

We proceed to construct f:>,2., N— M on each component in
such a way that Max b(p, M/image (3)i_, N— M)) < max b(p, M) — j
until max b(p, M/image (3., N— M)) =0 in which case image
G L;N— M)= M. Then we finish the epimorphism by sending the
remaining components anywhere.

Suppose f has been contructed on the first j components (7 = 0
is allowed). Let the image of 3,i_, N = I;,. Then if max b(p, M/I;) = 0
we are done. Otherwise max b(p, M/I;) > 0. Let p, -+, p, be all
the primes where b(p, M/I;) is maximal. Consider the submodules
p;xI; ={m|Ise R — p, with smep, M+ I;}, p,xI; # M since
(M/I;),, # 0. Furthermore an element me M is part of a minimal
generating set for (M/I,),, if and only if m¢ p; « I;. (Thisis an easy
consequence of Nakayama’s lemma.) Since a direct sum of copies of
N maps onto M there is some map f;;;N— M such that image
fii @+ I;, We will achieve our objective if we can find an f;: N— M
with image f; & p;* ;U+++Up, * I;, We prove this by induction on
m. The case m = 1 is already done. We arrange the primes p,, +«-, 9,
so that p,; is minimal among p,, ---, ;. We assume we have an f;
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that works for p,, ++-, »,. Then we want one working for p,, «+*, Dsrs-
If f; does, fine. Otherwise image f; C p,., = I;. Pick

YEPN e ND; — Vory

which exists since p,., cannot contain p, if 7 < s+ 1. Then I claim
fi + 7fes,; works. It works at p,., sinece image f; C .y, * I; while
7for1 D Pssr * I;. Hence image f; + 7f11m 2D Psri * I;. On the other hand
at p; for 7 < s + 1 we have image rf, . ; C p; * I; while image f; & p; = ;.
Hence image f; + 7f,11,» & p; * I;. This completes the proof.

REMARKS. The theorem as it stands is false for general A. For
if 4 = n by n matrices over a field, N = a column, M = A. Then at
least n copies of N are needed to map onto M but max b{p, M) = 1.
The difficulty in the proof is that in the non-commutative local case
the set of not basic elements are not a submodule. The proof above
uses heavily that the not basic elements are a submodule locally. In
fact the p; = I; are exactly the elements of J which are not basic in
(M/I;),,. I conjecture that if M is generated by n elements over R
and ¢ is the biggest integer < the square root of » that qmaxb(p, M)
would work.

Another difficulty with this result is if N were free on a large
number of generators then certainly we should be able to notice this
and get a much better bound which this theorem cannot detect.
Perhaps one could define a function b{p, N, M) which would use the
number of copies of N, needed to map onto M,. A theorem of this
type might give back Serre’s theorem except, for general N, one
certainly needs the hypothesis that a sum of N’s maps onto M.

We recall that in the category of R modules a generator is any
module such that a sum of copies of it maps onto B. Or equivalently
if for every module M and submodule N with N = M. There is a
map f:G— M with image f c N. Theorem 3 shows for R a module
N is a generator if and only if a sum of d copies of N maps onto R
where d = dim m-Spec(R).
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