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In this paper we explore the structure of Noether lattices
with join-principal maximal elements.

Results which completely specify the structure of certain special
classes of Noether lattices, and relate them to lattices of ideals of
Noetherian rings, have been obtained in [1], [2], [3], [4], [7], and [8].
For example, in [7] we showed that if every maximal element of a
Noether lattice ^ is meet-principal, then £f is distributive and can
be represented as the lattice of ideals of a Noetherian ring. Moreover,
for distributive Noether lattices, the condition that every maximal
element is meet-principal is equivalent to representability. In a more
recent paper [8], we began considering the complementary case of a
Noether lattice in which every maximal element is join-principal in
order to determine the extent of the relationship between the two
situations. There we showed that if 0 is prime in ^ (and every
maximal element is join-principal), then £? is distributive and repre-
sentable. Hence, if 0 is prime, the assumptions that every maximal
element is meet-principal and that every maximal element is join-
principal are equivalent, and either implies representability.

In this paper, we continue the investigation begun in [8]. Our
results extend the class of Noether lattices for which embedding and
structure theorems are known, and also introduce a construction process
for Noether lattices which leads to new examples.

In § 1, we show that in a local Noether lattice (£f, M) in which
M is join-principal and not a prime of 0, the maximal element M has
a minimal base Eu ,Ek of independent principal elements (i.e.,
E, A (E, V V Ei V V Ek) = 0 for i = 1, . . . , k). And we use this
result to show that if M is join-principal and not a prime of 0, then
Sf is distributive. In § 2, we obtain structure and embedding
theorems for distributive local Noether lattices with join-principal
maximal elements. In § 3, we investigate some of the consequences
of our results outside of the local case.

We adopt the terminology of [5].

1* Let ( ^ M) be a local Noether lattice and let £ e ^ The
quotient B/MB is a finite dimensional complemented modular lattice
and the number of elements in any minimal set of principal elements
with join B is the dimension of the quotient B/MB ([4], [6]). Hence
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if Eίf , Es is any set of principal elements with the property that
the elements Et V MB are independent in B/MB, then Eu •••,#, can
be extended to a minimal base for B. We will have occasion to use
these observations in what follows.

In this section we show that if ( ^ M) is a local Noether lattice
in which M is join-principal and not a prime of 0, then Sf is
distributive.

We begin with a lemma.

LEMMA 1.1. Let {££>, M) be a local Noether lattice in which M
is join-principal and not a prime of 0. Let El9 , Ekhe a minimal
base for M and, for each i = 1, , k, set Cζ = Eγ V

 β V Ei V V Ek.
Then each of the elements Ci(ί = 1, , k) is prime.

Proof. Since M is principal in ^fjCi (i = 1, •••,&), each of the
elements C* is either prime or ikf-primary [7]. Assume that Cr is
ikf-primary. And let n be the least positive integer such that E^1 ^ C r.
Then E?+1 ^ MCr. For, if not, there exist principal elements F19 , Fs

among El9 , Er, , Ek such that E?+1, Fl9 , Fs is a minimal base
for C r. But then Er, Fί9 ., Fs is a minimal base for M = Er V Cr.
Since C r, by definition, has fewer elements in a minimal base than M,
this is a contradiction. Hence £> + 1 ^ MCry as claimed. Consequently,
M%+1 ^ MCr, and therefore

£7; ^MnV(0:M) = Mn+ι: M = MCr: M = Cr V (0 : M) = Cr,

since M is join-principal and not a prime of 0. Since E? S C^ this
leads to a contradiction. Hence, each of the elements C{ is prime.

LEMMA 1.2. Let (J*f, M) be a local Noether lattice in which M
is join-principal and not a prime of 0. Then, in the notation of
Lemma 1.1, C1 A Λ Ck = 0.

Proof. Let £Ί, •••, Ek and C:, •••, Cfc be as in Lemma 1.1. We
first show that for 1 <; r < s <̂  k, ErEs = 0. Hence, suppose that
^ ^ ^ 0, and let n be a positive integer such that EVZ^ ^ M% and
jE?r-Kβ S Mn+1. Then ^ . ^ can be used in a minimal base for Mn.
Now, since M is join-principal and not a prime of 0, it follows from
the relation Mnk+n = Mnk(E? V V E%) that the elements E?, , El
form a minimal base for Mn. Hence, for some i, 1 ^ i ^ k, Mn =
£ 7 ^ , V £Γ V V E" V V JE'?. But then Mn ^ Ct , which contra-
dicts Lemma 1.1. It now follows that, for each s (1 ̂  s ^ fc), Cs A Es =
(Cs: ES)ES = CS£7S = 0, since Cs is prime and Es ^ Cs. Hence by modu-
larity Cx Λ Λ Cs = £7S+1 V V Ek for s ^ Λ, so that Cγ A Λ Ck = 0.
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We are now in a position to establish the main result of the
section.

THEOREM 1.3. Let (£?, M) he a local Noether lattice in which M
is a join-principal and not a prime of 0. Then Jzf is distributive.

Proof. Let El9 •••25'* and CΊ, " ,Ck be as in Lemma 1.1. A
simple inductive argument using modularity proves that

(V Ei{i)) A (V E!{i)) = V EΓx{j{i)Mi))

with the convention that E? means 0. Thus it suffices to show that
the only principal elements in ^f are 0, / and the powers E" of the
elements E19 * 9Ek. If k = 1, the result is immediate, so assume
k ^ 2. Let E be any principal element of £^ different from 0 and
/. We assume that the elements E19 * °,Ek are arranged so that
E ^ d for i > r and E £ d for i ^ r. Set C = d Λ Λ Cr and
consider £?/C. Since M is principal in each of the local Noether
lattices J*?/d (i = 1, , &), it follows by Lemmas 1.1 and 1.2 that
the primes of J*f/C are just M and CΊ, , C r. Hence, by the choice
of E9 the element E V C is Af-primary in Jzf/C, and therefore also in
Jέf. Let w be a positive integer such that Mn+1 ^ E'V C and
Mn ^ EV C, then, by modularity,

Mn+ι V C= CV {{Mn+ι V C) ΛE)

= C V ((M w + 1 V C ) :

Hence, either Mn+ί <CV ME or (Mn+1 V C):E= I. In the first

case, however,

Mn ^ M«+ι :M^(CV ME): M = (C: M) V E = C V E ,

which contradicts the choice of n. Hence (Mn+1 V C): E = I and
E ^ Mn+1 V C. Then E V C = M%+1 V C, so by the join-irreducibility
of principal elements in a local Noether lattice, it follows that
E V C = E?(1) Epk) V C, for some nonnegative integers ^(1), , φ(k).
On the other hand, E{ ^ C for i > r and £7 ^ C, so #>(i) = 0 for ΐ > r .
Now, if i =£ i and 1 ^ j ^ r, then ^ V C ^ C,. It follows that
r ^ 1, and hence that E ^ C2 Λ Λ Cko Then by the proof of
Lemma 1.2, C2 Λ Λ Ck = Et and M^Γ = E?+1, for all w. Hence,
there exists a positive integer u such that ^ ^ ^ and ^ ^ ME? =
JSr

i

tt+1. Since JEΊ is principal, it is now immediate that E = JEΊM.

We note that if ( ^ M) is a local Noether lattice in which M2 = 0,
then ikί is join-principal. Since such a Noether lattice need not be
distributive, the statement of Theorem 1.3 need not be valid without
the assumption that M is not a prime of 0. On the other hand, if
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is an arbitrary Noether lattice in which every maximal element is
join-principal, then the number of maximal primes associated with 0
is finite. Hence, at most finitely many of the localizations Sfu (M
maximal) are nondistributive.

2* Let ( ^ , M,) and (^f2, M2) be local Noether lattices, and let
= {(A, £) e j ^ © j ^ 2 ; A = I if and only if B = I}. It is clear that

^ is a sub-multiplicative-lattice of ^ © ^f2. Moreover, if Eγ and
E2 are principal elements of ^ and <£f2, respectively, with E1Φ I
and E2 Φ I, then the elements (Eίy 0) and (0, E2) are principal in £f.
Hence ^f is a local Noether lattice with maximal element (Ml9 M2). We
refer to £f as the local direct sum of Sfi and J^f2. An alternative
characterization is given by £? = (M110 0 M2\ 0)U{(/, /)}.

In this section we continue our investigation of a local Noether
lattice (^f, M) with join-principal maximal element. However, we
drop the hypothesis that M is not a prime of 0 and consider, instead,
the general distributive case. Our main result is that a distributive
local Noether lattice (£f, M), in which M is join-principal, is the
local direct sum of local Noether lattices with principal maximal ele-
ments. We begin with an extension of Lemma 1.2.

LEMMA 2.1. Let (£f, M) be a distributive local Noether lattice
in which M is join-principal. Let Eu , Ek be a minimal base for
M. Then E, A E5 = 0 for all i Φ j .

Proof. For each i = 1, . . . , k, set d = Eι V V Ei V V Ek.
Then

M = M2: M = {MC, V El) :M= C, V (E\: M)
and

Ei V (El: M) = (ME, V Eΐ):M= ME,: M - E, V (0 : M) ,

so because

(El: M) = (El: M) A (E, V 0 : M) = 0 : M V ((El: M) A Et)

by modularity, we have that

M = Ct V (0 : M) V ((El: M) A E,) = C, V (0 : M) V {E\: MEi)Ei,

i = 1, •••, k. Since principal elements are join-irreducible in a local
Noether lattice, since £f is distributive, and since E, ^ d, it follows
that either E, g 0 : M or E, ^ (El: ME%)E{, i = 1, . . . , k.

Assume that Er ^ (E2

r: MEr)Er. Then El: MEr = I, so MEr = E2

r.
Hence M = MEr: Er = E2

r :Er = ErV(0: Er). It follows that Ei ^
Er V (0: Er) for all i, and that ^ ^ 0: £7r for i Φ r since .5^ is dis-
tributive and Ei is join-irreducible. Therefore CiE{ — 0 (i = 1, , fc).
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Now, assume that 1 ^ i < j ^ k and let E be a principal element
such that E <, Eι /\ Ej. Suppose that E Φ 0 and choose integers u
and v such that E ^ E? A Ej, E ^ E?+ι and E ^ E]+1. Then # ^ E?
and £7 ̂  M#r, so J? = £ ? . Similarly # = JB7J, so £ ? = E = JE7J. Then
w > 1 and t; > 1, so M.ET1 = MSf 1 . It follows that E^"1 V (0: M) =
E;~ι V (0: M), so that either EΓι ^ E;-1 or £^~] ^ 0: M. In either
case, E? = 0. Hence j£ = 0 and E{ A Ed = 0.

THEOREM 2.2. Let (Jϊf, M) be a distributive local Noether lattice.
Then M is join-principal if, and only if, J^ is the (finite) local
direct sum of local Noether lattices with principal maximal elements.

Proof. Assume that (J*?, M) is a distributive local Noether lattice
in which M is join-principal. Let Eu •••, Ek be a minimal base for
M. And for each i = 1, •••,/?, let ( ^ , Jlfί) be a local Noether lattice
such that Mi is principal and Ml1 = 0 if, and only if, E* = 0. Since
£^ is distributive, it follows by Lemma 2.1 and [2] that every ele-
ment A e Jt? has a unique minimal basis consisting of powers of the
elements Elt , Ek. If we set E? = 0 and E\ = I, then it is clear
that the map Ep V V Eζk —> (Mp, , M£k) is a multiplicative
lattice isomorphism of £f onto the local direct sum of ££\, •••, £fk.

The converse is clear.

COROLLARY 2.3. Let (JSP, M) be a distributive local Noether lattice
in which M is join-principal. Then J*f is Noether-lattice-embeddable
in the lattice of ideals of a homomorphic image of a regular local
ring.

Proof. By Corollary 2.2, S?f is the local direct sum of local
Noether lattices ( ^ M0, , ( ^ , Mk), where, for each i, Mi is
principal in ^f{. If M{ is nilpotent in ^ , let τii be the least positive
integer such that M>* = 0; otherwise, let % = °o. Let RLk be the
regular local Noether lattice introduced in [1], and let Xu •••, Xk be
the minimal base for the maximal element of RLk. Let A be the
join of the elements X{Xj and X^ (where XΓ = 0). Then ^f is
clearly isomorphic to RLJA. Since RLk is Noether-lattice-embeddable
in the lattice of ideals of a regular local ring, [l], it follows that
RLJA and Sf are embeddable in the lattice of ideals of a homo-
morphic image of a regular local ring.

3. In this section we interpret some of the implications of the
results of §§ 1 and 2 outside of the local case.

We begin with a new characterization of the representable dis-
tributive Noether lattices.
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THEOREM 3.1. Let ^ be a Noether lattice. Then Sf is distri-
butive and representable as the lattice of ideals of a Noetherian ring
if, and only if, for each maximal element M of £^, M is join-principal
and OM is meet-irreducible.

Proof. If &> is distributive and representable, then each maximal
element M is principal [7]. Consequently, J*fM is a quotient of a
regular local Noether lattice of altitude 1, and OM is meet-irreducible.

Now, assume that ^f is a Noether lattice such that, for every
maximal element M, M is join-principal and OM is meet-irreducible.
Fix M and consider j*fM. If {M} is not a prime of 0 in ^fM, then
by Lemma 2.1, OM is meet-irreducible if, and only if, {M} is principal.
On the other hand, if {M} is a prime of 0 in JS?M, then {M} is the
only prime of 0. In this case, let E be any principal element such
that E ^ 0: {M}. Then {M}E = 0, so E is a point in £?M. Since the
meet of any two points is 0 and OM is irreducible by assumption, it
follows that 0: {M} is itself a point and that 0: {1W} ^ A, for every
A Φ 0. Now, assume that {M} Φ 0: {M}, and let F be a principal
element such that F ^ {M}, F $C {Mf and {M}F Φ 0. Then F is {M}-
primary, so there is a nonnegative integer n such that {M}n ^ F and
{M}n+ι ^ F. Hence {M}n+1 = {M}n+1 A F = ({M}n+ι: F)F, and therefore
either {M}n+1: F = I or {M}n+ι ^ {M}F. In the first case, {M}n+1 - F,
so {M} = F by the choice of F. In the second case,

{M}n ^ {M}n+1: {If} = {M}F: {M} = ί7 V (0 : {M}) = F,

a contradictiono Hence {M} is principal in i^, f. It now follows by
[7] that £<? is distributive and representable.

Recall that a Noether lattice £f satisfies the weak union condition
if, given elements A, B and C such that A ^ B and A ^ C, it follows
that there exists a principal element E ^ A such that E ^ B and
E ^ C. This concept was used in [7] to characterize the distributive
Noether lattices which are representable. It is easy to see that if Sf
is a Noether lattice which satisfies the weak union condition, then
every localization SfM has the (weaker) property that, given primes
Pi, , Pk and an element A such that A ^ Pζ (i = 1, •••,&), there
exists a principal element E ^ A such that E ^ P{ (i = I, , fc).
We say that a Noether lattice with this latter property satisfies the
union condition on primes.

THEOREM 3.2. Let J^ be a distributive Noether lattice such that,
for every maximal element M, £^M satisfies the union condition on
primes. If 0 has no embedded primes and if every maximal element
is join-principal, then Sf is Noether-lattice-embeddable in the lattice
of ideals of a Noetherian ring.
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Proof. Let 0 = Qt Λ Λ Qk be a normal decomposition in which
Qi is P^primary. And let M be a maximal element of ^f. If M is
a prime of 0, then M is a minimal prime. On the other hand, by
Lemma 1.1, if M is not a prime of 0, then 0 is prime in ^M. Hence,
if we assume that PU ,P8 are nonmaximal primes and that
Ps+u •••, Pjc are maximal primes, we have that

1 0 0 £T/P. 0 &>/Qβ+1 0

Then each of the summands -S^/P* (i — 1, •••, s) is isomorphic to the
lattice of ideals of some Noetherian ring [8], and each of the sum-
mands JzflQi (i = s + 1, , k) is Noether-lattice-embeddable in the
lattice of ideals of a Noetherian ring (Corollary 2.3). The conclusion
is now immediate.

By the results of [9], it is easy to see that any Noether lattice
of the type described in Theorem 3.2 has the property that every
element has a unique normal decomposition. On the other hand, a
Noether lattice with this latter property is the direct sum of local
Noether lattices with nilpotent maximal elements and one-dimensional
Noether lattices in which 0 is prime [9]. These observations lead to
the following, the proof of which is similar to the proof of Theorem 3.2:

THEOREM 3.3. Let Jyf be a Noether lattice in which each maximal
element is join-principal. Then the following are equivalent:

( i ) Each element has a unique normal decomposition,
(ii) Sf satisfies the union condition on primes and 0 has no

embedded primes,
(iii) J^f is the {finite) direct sum of Noether lattices with prin-

cipal maximal elements and local Noether lattices with
nilpotent maximal elements.

If, in addition, <Sf is distributive, then each of the above implies
that ,S? is Noether-lattice-embeddable in the lattice of ideals of a
Noetherian ring.
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