Pacific Journal of Mathematics

THE TRANSCENDENTAL RANK OF A THEORY

Alistair H. Lachlan

Vol. 37, No. 1

January 1971

THE TRANSCENDENTAL RANK OF A THEORY

ALISTAIR H. LACHLAN

Morley has associated with each countable complete theory T an ordinal $\alpha_T < (2^{\aleph_0})^+$. It is shown that in fact $\alpha_T \leq \omega_1$ and that this bound is best possible.

We shall use the notation and terminology of Morley [1], where α_T is defined to be the least ordinal α such that for all $A \in N(T)$ and all $\beta > \alpha$, $S^{\alpha}(A) = S^{\beta}(A)$. As in [1] T denotes a complete theory in a countable language L, T has an infinite model, and there is a theory Σ such that $T = \Sigma^*$. If $A \in N(T)$ and $p \in S(A)$, let $r(p) = \alpha$ if p is transcendental in rank α and let r(p) be undefined otherwise. Also, if $A \in N(T)$ and $\psi \in F(A)$ define

$$r(\psi, A) = egin{cases} -1 & ext{if} & U_{\psi} = arnothing \ \sup\left\{lpha \mid p \in U_{\psi} \ \& \ r(p) = lpha
ight\} & ext{otherwise.} \end{cases}$$

LEMMA. Let $A \in N(T)$, $\psi \in F(A)$, and $r(\psi, A) = \alpha$. Then for each $\beta < \alpha$ there exists $B \in N(T)$, $A \subseteq B$, and $q \in S(B)$ such that $r(q) = \beta$ and $\psi \in q$.

Proof. Assume the hypothesis and for contradiction that no B and q exist satisfying the conclusion. Then for every $B \in N(T)$, $A \subseteq B$, we have $i_{AB}^{*-1}(U_{\psi}) \cap Tr^{\beta}(B) = \emptyset$. Thus for all such B, $i_{AB}^{*-1}(U_{\psi}) \cap (S^{\beta+1})(B) - S^{\beta}(B)) = \emptyset$. Suppose $q' \in Tr^{\beta+1}(B)$ then for every $C \in N(T)$, $B \subseteq C$, $i_{BC}^{*-1}(q') \cap S^{\beta+1}(C)$ is a set of isolated points in $S^{\beta+1}(C)$. Thus, if $\psi \in q'$, $i_{BC}^{*-1}(q') \cap S^{\beta}(C)$ is a set of isolated points in $S^{\beta}(C)$ for all such C, whence $q' \in Tr^{\beta}(B)$. We conclude that $i_{AB}^{*-1}(U_{\psi}) \cap Tr^{\beta+1}(B) = \emptyset$ for all $B \in N(T)$, $A \subseteq B$. By induction $i_{AB}^{*-1}(U_{\psi}) \cap Tr^{\gamma}(B) = \emptyset$ for all $\gamma \geq \beta$. This contradicts the hypothesis and completes the proof of the lemma.

From 2.3(b) and 2.4 of [1] it is possible to choose B in the conclusion of the lemma such that $\kappa(B-A) = \aleph_0$; we shall make use of this fact below.

Before proceeding further we need some more definitions. A language L_1 is said to be a simple extension of a language L_0 if it is obtained by adjoining \aleph_0 individual constants to L_0 . For any language L' let F(L') denote the set of formulas of L' which have no free variable other than v_0 . For each $n \in \omega$ let S_n denote the set of all sequences of 0's and 1's of length $\leq n$; the empty sequence \emptyset is allowed. For $s \in S_n$ and $i \leq 1, s*\langle i \rangle$ denotes the member of S_{n+1}

obtained by juxtaposing *i* to the right of *s*. A map $\psi: S_n \to F(L)$ is called *admissible* if either n = 0, or n > 0 and for each $s \in S_m$, $0 \leq m < n$ there exists $\varphi \in F(L)$ such that $\psi(s*\langle 0 \rangle) = \psi(s) \& \varphi$ and $\psi(s*\langle 1 \rangle) = \psi(s) \& \neg \varphi$. The main step in our proof is:

PROPOSITION. Let $A \in N(T)$, $\kappa(A) \leq \aleph_0$, and $n \in \omega$. Let $\psi_n : S_n \to F(L_n)$ be an admissible map, where L_n is a simple extension of L(A), such that for every $\alpha < \omega_1$ there exists $B_n^{\alpha} \in N(T)$ with $A \subseteq B_n^{\alpha}$ and $L(B_n^{\alpha}) = L_n$ such that for all $s \in S_n$ $r(\psi_n(s), B_n^{\alpha}) \geq \alpha$. Then there exists a language L_{n+1} , which is a simple extension of L_n and an admissible map $\psi_{n+1} : S_{n+1} \to F(L_{n+1})$ extending ψ_n such that for every $\alpha < \omega_1$ there exists $B_{n+1}^{\alpha} \in N(T)$ with $A \subseteq B_{n+1}^{\alpha}$ and $L(B_{n+1}^{\alpha}) = L_{n+1}$ such that for all $s \in S_{n+1}$, $r(\psi_{n+1}(s), B_{n+1}^{\alpha}) \geq \alpha$.

Proof. Form L_{n+1} by adjoining a countable number of new individual constants to L_n . Consider a fixed ordinal $\alpha < \omega_1$. By 2^{n+1} applications of the lemma we can find $C^{\alpha} \in N(T)$ with $B_n^{\alpha+2} \subseteq C^{\alpha}$ and $L(C^{\alpha}) = L_{n+1}$ such that for each $s \in S_n - S_{n-1}$ there exist $p_0(s), p_1(s) \in S(C^{\alpha})$ both containing $\psi_n(s)$ such that $r(p_0(s)) = \alpha$ and $r(p_1(s)) = \alpha + 1$. For each $s \in S_n - S_{n-1}$ choose $\varphi^{\alpha}(s) \in p_0(s) - p_1(s)$. Define $\psi^{\alpha} : S_{n+1} \rightarrow F(L_{n+1})$ to be the extension of ψ_n such that for each $s \in S_n - S_{n-1}$, $\psi^{\alpha}(s*\langle 0 \rangle) = \psi_n(s) \& \varphi^{\alpha}(s)$ and $\psi^{\alpha}(s*\langle 0 \rangle) = \psi_n(s) \& \neg \varphi^{\alpha}(s)$. Letting $\psi_{n+1} = \psi^{\alpha}$ and $B_{n+1}^{\alpha} = C^{\alpha}$ the conclusion of the lemma holds for α . Perform the construction of ψ^{α} for each $\alpha < \omega_1$. Since L_{n+1} is countable the set $\{\psi^{\alpha} \mid \alpha < \omega_1\}$ is countable. Hence there is a cofinal subset Γ of ω_1 such that ψ^{γ} for $\gamma \in \Gamma$. For each $\alpha < \omega_1$ let γ be the least member of Γ such that $\alpha < \gamma$ and define $B_{n+1}^{\alpha} = C^{\gamma}$. This completes the proof of the proposition.

Let S_{ω} denote the set of all finite sequences of 0's and 1's. A sequence $\langle s_i \rangle_{i < \omega}$ of members of S_{ω} is called *regular* if $s_0 = \emptyset$ and for all $i < \omega$, s_{i+1} is either $s_i * \langle 0 \rangle$ or $s_i * \langle 1 \rangle$. Now let $A \in N(T)$ with $\kappa(A) \leq \aleph_0$, and let $p \in S(A)$ with $r(p) = \omega_1$. Choose $\varphi \in F(A)$ such that $U_{\varphi} \cap S^{\omega_1}(A) = \{p\}$. Let L_0 be L(A) and define $\psi_0 : S_0 \to F(L_0)$ by $\psi_0(\emptyset) = \varphi$ then φ_0 is admissible. Apply the proposition repeatedly to form L_1, L_2, \cdots and ψ_1, ψ_2, \cdots . Let $L_{\omega} = U_{n < \omega} L_n$ and let $\psi = \lim_{n < \omega} \psi_n$ where ψ maps S_{ω} into $F(L_{\omega})$. By the compactness theorem there exists $B \in N(T)$ such that $A \subseteq B$, $\kappa(B) = \aleph_0$, $L(B) = L_{\omega}$, and such that if $\langle s_i \rangle_{i < \omega}$ is a regular sequence in S_{ω} then $\{\psi(s_i) | i < \omega\} \subseteq q$ for some $q \in S(B)$. Let $s \in S_{\omega}$ then it is clear that the basic open set $U_{\psi(s)}$ of S(B) has power 2^{\aleph_0} . Also, since $\kappa(B) = \aleph_0$, for every $\alpha S^{\alpha+1}(B) - S^{\alpha}(B)$ is countable. Thus $U_{\psi(s)} \cap S^{\alpha}(B) \neq \emptyset$ for all $\alpha < \omega_1$. Since $S^{\alpha}(B)$ is closed and decreasing with α , $U_{\psi(s)} \cap S^{\omega_1}(B) \neq \emptyset$. It follows immediately that $\kappa(U'_{\varphi} \cap S^{\omega_1}(B)) \geq \aleph_0$ where U'_{φ} denotes the basic open set of S(B) determined by φ . From 2.3(b) of [1] $i^*_{AB}(S^{\omega_1}(B)) = S^{\omega_1}(A)$. Since $i^*_{AB}(U'_{\varphi}) = U_{\varphi}$ it follows that $i^{*-1}_{AB}(p) = U'_{\varphi} \cap S^{\omega_1}(B)$. But this contradicts $r(p) = \omega_1$ because $U'_{\varphi} \cap S^{\omega_1}(B)$ having power $\geq \aleph_0$ is not a set of isolated points.

Since $Tr^{\alpha}(A) \neq \emptyset$ for some finite $A \in N(T)$ if for any $A \in N(T)$, we have shown that $Tr^{\omega_1}(A) = \emptyset$ for every $A \in N(T)$. It follows easily that $S^{\beta}(A) = S^{\omega_1}(A)$ for every $\beta > \omega_1$ and every $A \in N(T)$. Thus $\alpha_T \leq \omega_1$ and our main theorem is proved.

We shall now construct a theory T such that $\alpha_T = \omega_1$.¹ In Example III of § 2 of [1] Morley showed how to construct a theory T_{β} for any $\beta < \omega_1$ such that $\alpha_{T_{\beta}} = \beta + 1$ and such that $L(T_{\beta}) =$ $\{R_n \mid n < \omega\}$ where each R_n is a unary relation symbol. For $\beta < \omega_1$ let A_{β} be a model of T_{β} . Suppose without loss that the sets $|A_{\beta}|$, $\beta < \omega_1$, are pairwise disjoint and each disjoint from ω_1 . Now let Abe the relational system such that $|A| = \omega_1 \cup_{\beta < \omega_1} |A_{\beta}|$ and define relations R^A , R_0^A , R_1^A , \cdots as follows: for all $x, y \in |A|$

and

and

$$R^{\scriptscriptstyle A}(x,\,y) \Longleftrightarrow x \in \omega_{\scriptscriptstyle 1} \,\&\, y \in |\,A_x|$$

$$R_n^A(y) \longleftrightarrow \bigvee x(x \in \omega_1 \& y \in R_n^{A_x})$$
.

If T is the theory of the system A then it is easy to see that $\alpha_{T} = \omega_{1}$.

In fact α_T can have as its value any ordinal $\leq \omega_1$ other than 0. From the examples to be found above it is sufficient to treat the case in which β is a limit ordinal $\langle \omega_1$. Let $\langle \beta_n \rangle_{n < \omega}$ be a strictly increasing sequence with limit β . Let T^* be the theory with the same language as T_{β} above such that if A is any model of T^* and F, G are disjoint finite subsets of ω then

$$\bigcap \{R_n^A \mid n \in F\} \cap \bigcap \{|A| - R_n^A \mid n \in G\} \neq \emptyset.$$

Choose axioms ψ_0, ψ_1, \cdots for T^* which are all existential, this is easy to do. For each n modify the theory T_{β_n} to obtain a theory T'_n whose transcendental rank is $\beta_n + 1$ and which has $\psi_0, \psi_1, \cdots, \psi_{n-1}$ amongst its theorems. For each $n < \omega$ let A_n be a model of T_n . Suppose that the sets $|A_n|, n < \omega$, are pairwise disjoint and disjoint from ω . Now let A be the relational system such that $|A| = \omega \cup \bigcup_{n < \omega} |A_n|$ with relations $R^A, R^A_0, R^A_1, \cdots$ defined by

$$R^{\scriptscriptstyle A}(x, y) \longleftrightarrow x \in \omega \& y \in |A_x|$$

$$R_n^A(y) \longleftrightarrow \mathbf{V} x(x \in \omega \& y \in R_n^{A_x})$$
.

¹ The referee informs me that similar examples have been found independently by several people.

References

M. Morley, Categoricity in power, Trans. Amer. Math. Soc., 114 (1965), 514-538.
 Received April 23, 1970.

SIMON FRASER UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON Stanford University Stanford, California 94305

C. R. HOBBY University of Washington Seattle, Washington 98105 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H

B. H. NEUMANN F. WOLF

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA	STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY	UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA	UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY	WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA	UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY	* * *
OREGON STATE UNIVERSITY	AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON	CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY	TRW SYSTEMS
UNIVERSITY OF SOUTHERN CALIFORNIA	NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics Vol. 37, No. 1 January, 1971

Gregory Frank Bachelis and Haskell Paul Rosenthal, On unconditionally	
converging series and biorthogonal systems in a Banach space	1
Richard William Beals, On spectral theory and scattering for elliptic	
operators with singular potentials	7
J. Lennart (John) Berggren, Solvable and supersolvable groups in which every	
element is conjugate to its inverse	
Lindsay Nathan Childs, On covering spaces and Galois extensions	29
William Jay Davis, David William Dean and Ivan Singer, Multipliers and	
unconditional convergence of biorthogonal expansions	35
Leroy John Derr, <i>Triangular matrices with the isoclinal property</i>	41
Paul Erdős, Robert James McEliece and Herbert Taylor, Ramsey bounds for	
graph products	45
Edward Graham Evans, Jr., On epimorphisms to finitely generated	
modules	47
Hector O. Fattorini, <i>The abstract Goursat problem</i>	51
Robert Dutton Fray and David Paul Roselle, <i>Weighted lattice paths</i>	85
Thomas L. Goulding and Augusto H. Ortiz, <i>Structure of semiprime</i> (p, q)	
radicals	97
E. W. Johnson and J. P. Lediaev, Structure of Noether lattices with	
join-principal maximal elements	101
David Samuel Kinderlehrer, <i>The regularity of minimal surfaces defined over</i>	
slit domains	109
Alistair H. Lachlan, <i>The transcendental rank of a theory</i>	119
Frank David Lesley, <i>Differentiability of minimal surfaces at the boundary</i>	123
Wolfgang Liebert, <i>Characterization of the endomorphism rings of divisible</i>	
torsion modules and reduced complete torsion-free modules over	
complete discrete valuation rings	141
Lawrence Carlton Moore, <i>Strictly increasing Riesz norms</i> .	171
Raymond Moos Redheffer. An inequality for the Hilbert transform	181
James Ted Rogers Ir Mapping solenoids onto strongly self-entwined	
circle-like continua	213
Sherman K Stein <i>B</i> -sets and planar maps	217
Darrell R. Turnidge, Torsion theories and rings of quotients of Morita	217
equivalent rings	225
Fred Listing The Hausdorff means of double Fourier series and the principle	223
of localization	235
Stanley Joseph Wertheimer, Quasi-compactness and decompositions for	235
arbitrary relations	253
Howard Henry Wicke and John Mays Worrell Ir. On the open continuous	235
images of paracompact Čech complete spaces	265
images of paracompact Cech complete spaces	205