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A circle-like continuum C is self-entwined if there exists
a sequence {C;} of circular chains which define C, a point p
in C, and a sequence {D;} such that, for each 1%, (1) either D;
is a subchain of C;, or D; = C;, (2) D;y, circles at least twice in
Ci, (3) Cisy circles at least once in C;, and (4) the point p is
in the first link of D;. If, in addition, each D;,, circles more
times in C; than C;i; circles in C;, then C is said to be
strongly self-entwined.

The purpose of this paper is to prove the following.

THEOREM 1, No solenoid can be mapped onto a strongly
self-entwined, circle-like continuum,

We show that each self-entwined, circle-like, plane continuum is
strongly self-entwined; hence Theorem 1 implies that no solenoid can
be mapped onto a self-entwined, circle-like, plane continuum.

Theorem 1 has another interesting corollary. Let = be a natural
number greater than one. Let V, denote the circle-like plane continuum
which is the common part of a descending sequence {C;} of circular
chains such that C;,, circles n times in C; in the positive direction
and then 7 — 1 times in the negative direction (see [1] for the
definition of circling) and such that the first link of C; contains the
closure of the first link of C;,,. The continuum V, is obviously self-
entwined, so no solenoid can be mapped onto V,. This contrasts with
a result [6] of J. W. Rogers, Jr., who has shown that each member
of an analogous class of are-like continua is -a continuous image of
each solenoid.

We assume the terminology and definitions of [3]. We use the
equivalent definition of self-entwined, circle-like continuum given in
[3]. We assume that each factor space of an inverse sequence is a
triangulation of the unit circle C and 'that each bonding map is a
surjective, piecewise-linear map of nonnegative degree. We also
assume that, under these maps, -the image of each vertex is either a
vertex or a midpoint of a one-simplex, and that adjacent vertices are
mapped into a simplex. Such inverse sequences are called barycentric
tnverse sequences. Each circle-like continuum has such an inverse
limit representation [4, Lemma 8].

We redefine strongly self-entwined, circle-like continua in the
terminology of [3]. If X =lim {X;, fi*'} is a self-entwined, circle-like
continuum (hence we may assume for each ¢ that deg (fi*') > 0 and
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R(fi') > 1), then we say that X is strongly self-entwined if
R(fi#Y) > deg(fi™) for each 1.

A solenoid is a circle-like continuum which is the inverse limit of
an inverse sequence such that each bonding map is one of the complex
functions {w = 2"},2,. A pseudo-circle is a non-arc-like, hereditarily
indecomposable, circle-like plane continuum [4].

1. Mapping solenoids onto circle-like continua. We proceed
immediately to the main theorem.

THEOREM 1. No solenoid can be mapped onto a strongly self-
entwined, circle-like continuum.

Proof. Let X = lim{X,, fi*'} be a strongly self-entwined, circle-
like continuum. We may assume that deg (fi*') = 1 and

R(fi) > deg (fit),i=1,2, ««- .

Let S =1im{S, gi*'} be the 2-solenocid; we may assume that each
bonding map ¢t is the complex function w = z:.. We prove the
theorem for S; the proof of the general case is similar.

Suppose that there exists a map f of S onto X. Let {¢,} be a
decreasing sequence of positive numbers converging to zero and

bounded above by 1/2. The existence of f implies the existence of
an infinite diagram

Saa Sui cee Spy >
(1) hl hl hkl
X ¢ Xow ce Xy

where {m(k)} and {n(k)} are increasing sequences of positive integers
and where every subdiagram

(2) hkl hrl

Xm(k) Xm(r)

is g-commutative for all » = k. See [2, Theorem 1] for details.

Since each ¢, < 1/2, Diagram (2) and Lemma 4 of [4] assure us
that

(3) deg (hio 950)) = deg (fuii))oh,) (r > k) .

We show (as in Theorem 5 of [3]) that the revolving number of
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hiogrts) is less than that of f7{5loh,. Now it is not necessary that
the two revolving numbers be equal, since the two composite maps
may differ by ¢,; since ¢, < 1/2, however, the revolving numbers can
differ by no more than two (one at each end of a defining interval).
For this reason, we add two to R(h,og"%) in the last inequality.
Because the bonding maps of the solenoid are so smooth, the
inequality of Theorem 1 of [3] is actually an equality. Therefore,

R(h, 0 957)) = R(93(7)) - deg (k) — deg (k) + R(h,)
= deg (92(7)) - deg (h,) — deg(h,) + R(h,)
= deg (b, o g21)) — deg (k) + R(h,) .

On the other hand, repeated applications of Theorem 1 of [3]
imply that

R(f2) 2 3 [R(f30.) - deg (F2(7) — deg (271 + R(F28)

Since
R(fniiy) = 1+ deg (fniil,) and deg (fnil,) =1,

we have
R(f2) z 3 deg (£210)
= deg (f2if) + 3 (deg £215)
= deg (f20) + (r — 2).
Again applying Theorem 1 of [3], we find that

R(fnl oh,) = R(h,)-deg (f2i])) — deg (fniD)) + R(f7)
= deg (h,) - deg (f7i)) — deg (/1)
+ deg (f2il)) + (r — 2)
= deg (fnioh,) +7r—2
= deg (h,00,)) + 7 — 2
= R(h,og%()) + deg (h) — R(h) + 7 — 2.

If we choose r to exceed R(h,) — deg(h,) + 5, then we obtain
B(fa o hy) > B, g3(7) + 2.

This contradiction establishes the theorem.

COROLLARY 1. No solenoid can be mapped onto a self-entwined,
circle-like, plane continuum.
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Proof. It suffices to show that each self-entwined, circle-like,
plane continuum C is strongly self-entwined. Since C is self-entwined,
C is the inverse limit of an inverse sequence {C;, fi'}, where
R(fi*Y > 1 and deg (fi*) > 0, for each 4. By Theorem 3 of [1], we
may assume, by choosing a subsequence if necessary, that deg(f7') = 1,
for all 4. Therefore, R(fi*') > deg(fi*'), and C is strongly self-
entwined.

COROLLARY 2. No solenoid can be mapped onto a V,.

COROLLARY 3. No solenoid can be mapped onto the pseudo-circle.
[4].
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