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Cohen’s factorization-theorem asserts that if the Banach
algebra 2 has a left approximate identity, then each ye
may be written y = %z, z,2¢?, The vector £ may be chosen
to be bounded by some fixed constant and z may be chosen
arbitrarily close to y, In this setting the theorem below
asserts that if F is a holomorphic function defined on a
sufficiently large disc about { =1, and satisfying F'(1) =1,
then each y<? may be written y = F(z)z, where xz,z¢U,
Again x may be chosen to be bounded by some fixed constant
and z may be chosen close to ¥.

We state and prove our result using the terminology of [2].
The proof is an elaboration of the proof of Theorem 2.2 of [2]. In
what follows X is a complex Banach space, & = {£,} is a uniformly
bounded subset of B(X) which we may assume to be directed and
which satisfies lim, F, £ = E for each Ec &. Convergence is in the
norm topology of B(X). Let

Y={reX: limE,z =},

and let ¥ be the closed subalgebra of B(X) generated by &.
For further extensions of Cohen’s theorem we refer the reader
to Chapter 8 of [3].

THEOREM. Let F be a holomorphic complex-valued function with
FQ) =1, defined on a neighbourhood of {zcC||z — 1| < M}, M > 1,
where ||E — I|| < M for all Ee &.

Then to every ye Y and 6 > 0 there exist z€ Y and UecIA such
that

y=F(U)z and ||y — 2] < 0.

If furthermore F' has mo zeros in the open tnterval 10, 1[, then
U may for some a0, 1] be written in the form

U=Sal— )" E,,

where E,e & for k=1,2,+--.
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Proof. It suffices to prove the theorem in the case where F' has
no zeros in )0, 1], since we otherwise simply use the function
G(z) = F(é 2) F(e")™

for # small, instead of F.
Let {\,, «-

M} denote the zeros of F in the disc {ze C||z—- 1| M}.
Let finally ye Y and 6 > 0 be given.

To proceed we need

LEMMA 1. Let 0<a<1; E, -+, E, ¢ & and set

U =3al—a) " E,+1—arl.

Assume that no \; belongs to the spectrum o(U,) of U,, and that

RB(n, U)YS Y for i=1,+,m,
where

R(Xiy Un) = (7\’@-[ - Un)_l .

Then F(U,) and W, = F(U,) belong to B(X) and both map Y
wnto Y.

Proof. We assert first that ¢(U,) & {|z — 1] < M}. Indeed,

U, —I= kg al — @) E,+ (L —ayrl—I= kz a(l — a)* (B, — I,
so that

10U, — Il = M3, all — @)~
Now

Ml—-@Q—-am <M.

Y={veX|limE,x =z},

and consequently EY = Y for every Ee¢ &, so that U, Y < Y. For
| — 1| = M we have
RCU)=C-H)"T-C-1D) (U, - D)™
=C-D"'3C-D) MU, - D),

which converges absolutely, so that

RC,U)YES Y.
Since the integral
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F(U,) = Lg FORE, U)dL e BX)
2re Jig—u=xn

is a limit of Riemann sums,
FU)YCSY.
Since F' is holomorphic and does not vanish on ¢(U,) we have
wW,= F(U, e BX) .
To show W,Y &Y, write

F@) = 11 0w — 9“H() ,

where H does not vanish on {|z — 1| < M.} The above argument shows
H*U,Y =Y. Finally,
F-(U,) = H(U,) 1T ROv, U,
and
RN, U)Y &Y
by hypothesis.

LEMMA 2. If in addition U, may be chosen so that

(W, — W)yl < zi for m=1,2 -,

then the theorem follows.
Proof. Set z,= W,y. Then {z,} is a Cauchy-sequence. With

z = lim, 2, we have ||z — y|| < 0.
Further, if

U=>Sal - )" E,,
then
|F(U)z — yll = [|[F(U)z — F(U,)z + F(U)(z — z,) + F(U,)z, — ¥y
S [|F(U) — F(UM 21l + IF(U) 1z = 241]

from which the lemma follows.
We will need the following technical lemma in the induction step
below, where we use the notation

T(a) = {1 — a)™"|n=10,1,---and pre{r, -+, N} U{z] |2 — 1| = M}
for 0<a<1l.
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LEMMA 3. There exists be]0, 1[ such that
lac — 1) < _zlﬁfor all ae0,b] and oll ze T(a) .

Let A, =aE,+ (1 — a)l for some a€]0,b]. Then for te T(a)
we have that R(r, A,) exists in B(X), maps Y into Y and;has
| R(t, Ay || £ C < o, where C only depends on F' and M.

Furthermore, for fized Ke & and xve Y,

lim R(z, A)E = (t — 1)7'E
and
lim R(z, Az = (r — 1) 'z,

both uniformly for e T(a).

Proof. The first assertion is an easy consequence of the fact
that F has no zeros in ]0, 1], so that

|t — 1| =¢ >0 for all e T(a) and all ae]0, 1.

Since

tI— A, = (-1 I - “1(Ea—l>),

T —

we have that

R, 4) = (e = D 5 (25 ) B~ D

T —

converges by our choice of a, maps Y into Y and finally that
IR(z, A)|| < max |7 — 1] 3 2% = 2max {7 — 1 || e T(a)} .
[}
By an easy calculation

R(Ty Aa) - (T - 1)_112 2 R(T, Aa)(Ea - I) ’

e
(t—-1)
which yields the lemma.

We will also need the following trivial lemma.

LEMMA 4. Let {T,,|lacA,i=1, .-+, n} & B(Y) satisfy
[ Tiall £ C< oo for all acA,i=1,+++,m.

If T, ,— T, strongly for 1 =1, «++, m, then
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11101 T’za"' Tn,a—_) 7117"2'°' T'IL
strongly.

We will now by induction find a sequence {E,} & & such that
for any fixed a€]0, b],

RO\, U)eB(X) forall i=1,+.o,m and n=01, -,

(*) maps Y into Y and such that

IW%—WJM<§fmn:L&m.

The theorem then follows from Lemma 2. For # = 0 we may
take U, = I.

Now suppose we have found U, U, ..., U, satisfying (x).

Let A,., = aF,, + (1 — a)l, where E,, €% is to be chosen.

Since R(z, A,.) makes sense for v¢ T{a) by Lemma 3, we may
define

U0y = =S a(l — @RI — @)™, A, ) By + (1 — oI

for e T(a). We note that U,(A) may be chosen arbitrarily close to
1 —-x1—a)™ (U, — A\I) uniformly for ne T(a) if we just take E,,,
large. Therefore, U,(\)™* exists in B(X), maps Y into Y and is
uniformly bounded in T(a) and & for E,,, large.
By an easy calculation

M—-U,; =Ml —a)yml— A, )U.(\)
80

B\, Unsr) = UM RBOML — @)™, Ayi)

exists in B(X), maps Y into Y and is uniformly bounded in T(a)
and &.
Since

F(U) = HU) 11 R(v, U,

it is by an easy application of Lemma 4 left to show that for each
xeY,

R\, U,z — R\, U,z

uniformly for ne T(a) as E,., increases in &.
Now
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RO\, U)o — RO, U
= U,(0\)"ROML — @), Ay)e — RO\, Uy
= U.WT[BEML — @)™, Aup)z — (M1 — a)™ — 1)7'2]
+ (M1 = &)™ = DU — R, Ul .

The first term can be made arbitrarily small by Lemma 3. The
second term can be made arbitrarily small too, for we have already
observed that

U.N)— 1 —-x1—-a)™) (U, —AI) unif. in T(a)
0
U.nN)"'— M1 —a)y™— 1R\, U,) unif. in T(a).
That finishes the proof.

REMARK. If K is a compact subset of Y then we can use the
same U for all ye K. That is proved as in [5].

Similarly, if y, — 0, then there exist U and =z,, x,— 0 such that
y;€ F(U)x;.

COROLLARY. Let A be a commutative self-adjoint semi-simple
Banach algebra with a bounded approximate identity {e,}). Let _#,
be the maximal ideal space for A. If feC(.#,), the continuous
complex functions on _#Z, vanishing at o, and f =0, then there
exists a ge Cy(_ ), g =0 such that V' flge A. If fec A, then g may
be chosen to be in A.

Proof. f—f is continuous since A is commutative and semi-
simple. {f.} = {e..} is an approximate identity consisting of non-
negative functions. Let F(z) = z* and write feCy(.#), f =0 as
f = h*g, where h = X a(l — a)"'f, with {f.} & {f.} is in A. Then

h = 1 f]g, and we are done.

This Corollary may be contrasted with a theorem of Katznelson

[4] which asserts that if 1/f e A for each nonnegative f in A then
A = C(7).
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