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A normal operator generates an abelian von Neumann
algebra. However, an operator which is similar to a normal
operator may generate a von Neumann algebra which is not
even type I. In fact, it is shown that if S*f is a von Neumann
algebra on a separable Hubert space and S/ has no type II
finite summand, then Sxf has a generator which is similar to
a self-adjoint and Sf has a generator which is similar to a
unitary. The restriction that S%? have no type II finite
summand can be removed provided that it is assumed that
every type II finite von Neumann algebra has a single
generator.

Let Sίf be a separable Hubert space and let J ^ be a von Neumann
algebra on £ίf. Sf' denotes the commutant of sf. For n ^ 2, let
Mn(Ssf) denote the von Neumann algebra of n x n matrices with
entries in sf. If T is a bounded operator, the &(T) is the von
Neumann algebra generated by T.

We begin with some lemmas.

LEMMA 1. Let sf = &{C) and suppose n :> 3. Let {λA}J=1 and
{&k}t=\ be sequences of complex numbers such that the Xk are distinct,
each ak Φ 0, and ||(X — λ2)C|| ^ |αLα2 | . Define A — (Aitj)iJ=1 e Mn(Ssf)
by Akyk = XkI, Ak+ltk = akl, A3tl — C, and Aitj = 0 otherwise. Define
B = (Bu)lj=ι e Mn{S>f) by Bk,k = XkI and Bu - 0 if %Φ j . Then A
and B are similar, and &(A) — Mn(

Proof. It follows from [11, Lemma 1] that &{A) = Mn{^f). To
show that A and B are similar we need only that the Xk are distinct.
We must find an invertible operator S such that AS = SB. Such
an S of the form S = I + N, where N is lower triangular and nilpotent,
can be computed easily. Merely perform the matrix multiplications
and solve for the entries of S. We omit the details.

REMARK 1. If the operator S = / + N in Lemma 1 is computed,
we see that we can make the entries of N small by choosing | |C|[,
Iaι I, Iα21, , | αw_! | suitably small. Hence we can suppose that || i\Γ|| <
1/2. Then \\S\ - \\I + N\\ < 3/2 and HS^H = | | I - # + 2 N Γ 2 - . . . ±
Nn~1\\<2. Note also that by choosing | |C | | , | α j , | α 2 | ,
suitably, we can assume that | |A| | ^ | |J5| | + 1.
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The following is a corollary of Lemma 1.

COROLLARY 1. If Stf is a properly infinite von Neumann algebra
on ££*, then £/ has a generator which is similar to a self-adjoint
operator.

Proof. If Szf is properly infinite, then it is well-known that
is *-isomorphic to Λfa(jy). Ssf has a single generator C by [10].
Construct a generator A of M3(J^) as in Lemma 1, with λL, λ2, and λ3

real. Then A is similar to self-ad joint operator by Lemma 1.
(Another easy proof of Corollary 1 can be deduced from methods in
the proof of Corollary 1 in [1].)

It has been shown that if Sxf is properly infinite, then j y is
generated by three projections [9] and by two idempotents [4]. A
related result is

COROLLARY 2. If S^f is a properly infinite von Neumann algebra
on £ίf, then S*f is generated by three commuting idempotents.

Proof. If A is the generator of Jϊf constructed in Corollary 1,
let E be the (idempotent valued) spectral measure of A. Then E(\),
E(X2), and E(X3) are the required commuting idempotents.

Let σ(C) denote the spectrum of the operator C.

LEMMA 2. Let sf = &(C). Let

[C 0 1 ΓC 0
A~[al λlj' LO λ/

where a Φ 0 and λ g σ(C). Then A is similar to B, and

Proof. A routine computation shows that

It follows that έg(A) = &(A)" = M2(J^). Let

/ 0'

'_a(C - XI)-1

Then S is invertible and AS = SB.

LEMMA 3. Let {Ak}f=0 be a uniformly bounded sequence of opera-
tors. Suppose that the Ak have pairwise disjoint spectra. Then
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Proof. The proof given here is due essentially to Rosenthal [8,
Th. 3]. (See also [3, Lemma].) Let A = Σ Γ = o θ 4 Suppose C =
(Ci j)T,j=o commutes with A. Then

CijAj = Aidj for all i, j .

If iΦ j , then 0 (Aί) and σ(A,) are disjoint, so by a theorem of Rosen-
blum [7], Cί3 = 0. It follows that .δP(A)' = Σ"=oθ^(A f c ) ' , so that

THEOREM 1. If Jϊf is a von Neumann algebra on a separable
Hilbert space such that Sf has no type II finite summand, then
has a generator which is similar to a self-adjoint operator.

Proof. Write J^f = Σ*-=o 0 *$/«* where s^ is properly infinite
and for each n°^l, JK is an ^-homogeneous type I summand (see
[2]). (Note that some of these summands may be absent.) Let {/w}«=0

be a pairwise disjoint sequence of nonempty subintervals of [0, 1].
By Corollary 1, we can choose Ao and an invertible operator So

such that &(AQ) = J^J, S0A0S^1 is self-adjoint, and σ(A0)aI0.
For each n ^ 1, JK is *-isomorphic to Λfn(^w), where c^n is the

center of j^ς (see [2]). ^ is abelian, so c^n has a self-adjoint
generator by [5]. Let Aι be a self-ad joint generator of j^[ = <£7

1. By
translating and scaling, if necessary, we can assume σ(Aι)dIι. Let
Si be the identity in j ^ .

Let C be a self-adjoint generator of c^2 with α (C) properly con-
tained in I2. Let λe/ 2 with λgσ(C). Let α ̂  0 and let

ΐ xlm

Then by Lemma 2, &(A2) = s$f2 and for some invertible S2, S^S^1

is self-adjoint. Also, σ(A2) = σ(C) U {λ} c I2.
For n ^ 3, use Lemma 1 to construct An and an invertible Sn

such that &(An) = j^ς, SnAnS~ι is self-ad joint, and σ(Aw) c / n . More-
over by Remark 1, we can suppose that the sequences {An}y {Sn}, and
{S"1} are uniformly bounded.

Let A = ΣίΓ=o θ An, and let S = Σ~=o SΛ. Then A and S are
bounded operators, S is invertible, and SAS^ is self-ad joint. Finally
^*(A) = Σ?=o θ Aw by Lemma 3.

It has long been conjectured that every von Neumann algebra on
a separable Hilbert space has a single generator. Results in [6] and
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[10] reduce the proof of the conjecture to showing that (S) Every
type II finite von Neumann algebra on a separable Hubert space has
single generator. (See [4] for a partial solution to this conjecture.)

THEOREM 2. If (S) is true and s*f is a von Neumann algebra
on a separable Hilbert space, then Ssf has a generator which is similar
to a self-adjoint operator.

Proof. Write S^f — ̂  φ Sf2, where j ^ has no type II finite
summand and s^2 is type II finite. By Theorem 1, j^J has a generator
AΛ which is similar to a self-adjoint operator. Construct a generator
of s^2 as follows: Choose a projection Ee j ^ 2 such that J^J is spatially
*-isomorphic to M4(E<W2E). Es^E is type II finite, so Es/2E has a
single generator by assumption. Now use Lemma 1 to construct a
generator A2 of j^J which is similar to a self-adjoint and such that
σ(A^) and σ(A2) are disjoint. Then Aι φ A2 is similar to a self-ad joint
operator, and &{AX © A2) = J^ © J^ζ.

We now indicate briefly how the previous results can be obtained
with "similar to a self-adjoint" replaced by "similar to a unitary/'

COROLLARY Γ. If s/ is a properly infinite von Neumann algebra
on J%f, then J^f has a generator which is similar to a unitary operator.

The proof is the proof of Corollary 1, except that XL1 λ2, and λ3

must be chosen on the unit circle. (See [1] for another proof.)

THEOREM 1'. If S^f is a von Neumann algebra on a separable
Hilbert space such that S^ has no type II finite summand, then
has a generator which is similar to a unitary operator.

Proof. Proceed as in the proof of Theorem 1. Write
Σ"=o © J&Ή Use Lemmas 1 and 2 and Corollary Γ to construct
generators An of the j^ζ which have pairwise disjoint spectra on the
unit circle. Then each An will be similar to a unitary operator. To
handle the summands j ^ and J^J, we need the following: If C is a
self-adjoint generator of ^ , then eic is a unitary generator of &
and σ(eic) = {eiλ: Xeσ(C)}. The rest of the proof is clear.

Finally we have

THEOREM 2'. If (S) is true and Stf is a von Neumann algebra
on a separable Hilbert space, then Jzf has a generator which is similar
to a unitary operator.
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