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Let A be an ^-square matrix over a field F of character-
istic 0. The additive commutator operator defined by A,
TAX — AX — XA, can be regarded as a linear transformation
on the space of all π-square matrices X over F. Following
earlier papers by 0. Taussky and H. Wielandt and one of
the present authors, we show that the degree of the minimal
polynomial of TA is always odd and at least

2[ra + E + (k - 2)e - k] + 1

where m is the degree of the minimal polynomial of A, k is
the number of distinct eigenvalues of A, and E(e) is the largest
(least) integer among the degrees of the distinct highest
degree elementary divisors of the characteristic matrix of A.

The purpose of this paper is two-fold: first we obtain a count
of the number of distinct differences of the form z{ — zjy i Φ j, where
zl9 •••,£» are distinct elements of a field F of characteristic 0; second
we apply this to prove a result on the parity and magnitude of the
degree of the minimal polynomial of a matrix commutator. Annihilat-
ing polynomials for commutators were originally considered by Taussky
and Wielandt in a paper in 1962 [5] and then again by one of the
present authors in 1964 [2] (see also [1] and [6]).

To be precise let A be an ^-square matrix over F and consider
the linear transformation TA defined on the space Mn{F) of w-square
matrices over F:

(1) TAX=AX-XA, XeMn(F).

Then TA is called the commutator operator defined by A. The trans-
formation TA has a matrix representation A ® I% — IΛ 0 A where (g)
indicates Kronecker product [3, p. 8]. The minimal polynomial of TA

is called the minimal polynomial of the commutator operator (1).
In an appropriate algebraic extension field K of F the elementary

divisors of the characteristic matrix of A are powers of binomials.
Let 7i, β ,7Λ be the distinct eigenvalues of A, let β< be the degree
of the highest degree elementary divisor of the characteristic matrix
of A involving ji9 i = 1, , k, let E = max* eh e — min^ ei} and let
m be the degree of the minimal polynomial of A.

THEOREM 1. If F is a field of characteristic zero then the degree
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of the minimal polynomial of the commutator operator TA is always
odd and at least

2[m + E + (k - 2)e - k] + 1 .

In order to prove Theorem 1 we shall find it necessary to consider
the following problem: given n distinct numbers zu , zn in F how
many distinct differences are there of the form z{ — zh i Φ j , i, j =
1, , ni Of course, the number can be as small as 2n — 2 by simply
taking zt = i, i = 1, , n. As an application of the Perron-Frobenius
theorem on nonnegative matrices the following result, used to prove
Theorem 1, may be of some independent interest.

THEOREM 2. Let zu * ,zn be n distinct element in a field F of
characteristic 0. Then there are always at least 2n — 2 distinct non-
zero differences of the form z{ — zh i Φ j , i, j = 1, , n.

II. Proofs. We begin with the proof of Theorem 2. We shall
show in fact that there exists a permutation φ e Sn (the symmetric
group of degree n) for which the 2n — 2 elements

are distinct. If this is not the case then for every φ e Sn there must
exist integers p and q, p Φ q, such that

For, obviously the two sets of numbers (2) obtained by choosing first
the + signs and then the —signs each consist of n — 1 distinct dif-
ferences. Thus if there is to be an overlap, (3) must hold and we
have zφω = \zψ[v) + h.zψ{q). Since φ is arbitrary we can write Zι =
Σy-i aijzj, i — 1> * *> n> where for each i, there are precisely two
values of j for which ai5 — \, and otherwise ai3- = 0. Let A = (α^ ),
z — (zly , zn) so that

( 4 ) Az = z .

The matrix A may or may not be reducible but in any event there
exists an ^-square permutation matrix P such that

A, 0 ••• 0

* A2

: ' . °
* * Am

< 5) PTAP =

and moreover each of the square matrices appearing along the main
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diagonal in (5) is irreducible or 1-square. Now suppose At is ^-square.
Since each row of A (and hence of PTAP) has precisely two nonzero
entries in it, it follows that k ^ 2. From (4) we have

( 6 ) PτAPx = x

where x = Pτz. Let y = (xl9 , xk) and we see that (5) and (6)
imply that

(7) (A 1 -J t )i/ = 0.

Since F has characteristic 0 it contains the rationale and A1 can be
regarded as a nonnegative, irreducible, row-stochastic matrix. By the
Perron-Frobenius theorem [3, p. 124] we can immediately conclude
that 1 is a simple eigenvalue of Ax and hence the nullity of Aλ — Ik

over the rationale is k — 1. But the nullity is unchanged by regarding
A1 — Ik as a matrix over any extension field of F. Now e — (1, , 1)
is in the null space of Aλ — Ik and hence any vector y satisfying (7)
must be a multiple of e. Since k ^ 2 we conclude that at least two
of the y{ are the same and hence that at least two of the z{ are the
same. This contradiction completes the proof.

The preceding result has an immediate corollary. We let v(%)
denote the cardinality of a set 2L

COROLLARY. Let % be the set of all distinct non-zero differences
of the form z{ — zj9 i Φ j . Then v(%) is even and at least 2n — 2.

Proof. According to the preceding argument there exists a per-
mutation φeSn such that the 2^ — 2 differences ±(zφ{1) — zφ(i)), i =
2, , n, are distinct. We can assume without loss of generality that
φ is the identity. Let

a = {z1 - zif i = 2, , n) ,

β = & ~ Zi, i = 2, •••, n) ,

v(ά) = v{β) = n — 1. If 2ί = a\Jβ then we are finished. So assume
that there exist integers ii9 ju 1 < \ ^ n, 1 < j\ ^ n, iL Φ j, such that
zh — zj%& αU/5. But then clearly zjl — zh£ aljβ For if zh — zhe a,
say, then zjχ — zH — zL — zt and hence zh — zjl — zt — zL in contradiction
to the assumption that zh — Zj.eaUβ. Now set

a, = aU {zh - zh} , β1 = βU {zh - zH] .

Clearly v(a,UA) = φU/3) + 2 and if a^βiΦ'Ά we can repeat the
preceding argument with a, and β, replacing a and β to obtain a2

and β2 such that v(a2 (J β2) = v(ay U β,) + 2 = v{a U β) + 4 = (2n - 2) + 4.
This procedure can obviously be continued until 21 is exhausted.
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To prove Theorem 1 we use a well known theorem of Roth [4]r
if (λ — Ύi)p and (λ — 73 )

g are a pair of elementary divisors of the
characteristic matrix of A then corresponding to these is a list of
elementary divisors of the characteristic matrix of A (g) In — In (g) A:

(λ - (7, - 7i))' ,

where t ^ p + q — 1. According to Theorem 2 there are at least
(2k — 2) distinct nonzero differences of the form ±(Ύφ{1) — Ύφ{j)),j =
2, , k, and it is simply a matter of notational convenience to assume
that these 2k — 2 differences are ±(Ύ1 — 7«), i = 2, •&. The highest
degree elementary divisor involving the zero eigenvalue of the charac-
teristic matrix of A (g) In — In 0 A is

( 8) X2E~ι .

By the corollary, the set SI of all nonzero distinct eigenvalues of TA[

is of the form

Now suppose the highest degree elementary divisors of the charac-
teristic matrix of 4 ® / n - I Λ 0 4 involving the nonzero distinct
eigenvalues of TA are:

(λ - (7! - 7 ί))' r ί 4 ' <~\ (λ - (7, - 71))^+ e s ΐ"1, i = 2, • , fc ,

(λ — (jh — 7 i ί ) ) e m ί + e < ? έ ~ \ (λ — ( 7 ^ — rYit))βmt+βqt~1, t = 1, , p .

Thus the degree of the minimal polynomial of TA is

(9) d = 2S - 1 + 2 g K + eβ. - 1) + 2 Σ (fimt + βfft - 1) ,

an odd integer. Observe that

d ^ (2E - 1) + 2 Σ fe + βi - 1) + 2 Σ (β*. + e3- - 1) .
i — 2. t = l

and hence

= 2£; ~ 1 + 2(m - β:) + 2(fc

^ 2[m + j& + (fc - 2)e - k]

This completes the proof of Theorem 1.
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