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Morphisms of Klein surfaces are discussed from the
sheaf-theoretic standpoint, and the cohomology of an analytic
sheaf on a Klein surface is computed.

0. Let X¥ be a Klein surface [1], [2]; that is, X consists of an
underlying space X, which is a surface with boundary, and a family
of equivalent dianalytic atlases on X. If (U, 2,) is such an atlas,
then z,: U,— C* is a homeomorphism of the open set U, in X onto
an open subset of C* = {zeC|Im(z) = 0}. The functions z, must
thus be real on U, N 0X, and it is required that z,-2z;’ be dianalytic,
that is, either analytic or antianalytic on each component of
2(Ue N Uy).

In this paper we define the structure sheaf of %, show that the
concept of morphism given in [1], [2] coincides with the concept of a
morphism of ringed spaces, and compute the cohomology of analytice

sheaves on ¥. If & is an analytic sheaf on X, and & is the lift

of 7 to the complex double X of X, then there is a natural isomor-
phism

H'X 5)=CQ®: H'(X, 5) .

1. The structure sheaf 7. We define the structure sheaf
< = ¢ on X as follows. If U is open in X, let <7 (U) be the ring
of holomorphic functions on U (in the sense of [1], [2]). If U > U,
then the inclusion map is a morphism of Klein surfaces and we have
a natural map op: &(U)— < (U’) (this is not quite an ordinary
restriction map since the elements of #7(U) are not quite functions).
In particular, if (U, 2, and (U, 2z;) are dianalytic charts on %,
U, > U, then

: — .NoX R},
ﬁ(Ua);jf U.,— C|f(UN )_C } .
[ and foz;'analytic
and

o%e(f) { F|U; where z,0z;*is analytic
U =

f1Uswhere z,02;"is antianalytic .

It is easily checked that this defines a sheaf of local R-algebras
on %.

Let %, 9 be Klein surfaces, f:%9 — X a continuous map. Then f
is a morphism [1] if f(@Y) c 0X and if for every point pe Y there
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are dianalytic charts (V, w) and (U, 2) at » and f(p), and an analytic
function & on w(V), such that

vy

C*——};—) C — C*

commutes (¢ is the folding map, é(a + bi) = a + |b|1).

Reecall that a ringed space morphism 9 — X is a pair (f, 6) where
f:Y— X is continuous and 6: 27, — f. & is a morphism of sheaves
of rings [4, p. 36]. Here f.% is the direct image sheaf: . (U) =
Ty (f7HU))-

THEOREM 1. Let %,%9) be Klein surfaces, and let f: Y —X be a
nonconstant continuous map. Then the following are equivalent:

(1) f is a morphism;

(ii) there ewists a morphism 6: % — fu7 of sheaves of R-
algebras.
Under these conditions the morphism 0 is unique, so f can be made
wm o unique way into a morphism of ringed spaces.

Proof. (1) =(ii). Let UD> U’ be open in X. From the com-
mutative diagram:

SHU) ——— U
fl 1f
Ue——U’
of morphisms of Klein surfaces we deduce a commutative diagram

T(U) ——— (U’)

J l

Y fHU)) ———— A(FHU))

of morphisms of R-algebras, and this defines an R-algebra morphism
0: 7 — [« Cye

(ii)=1(i). Let peY, and let (V, w), (U, 2z) be dianalytic charts
at p, f(p), with f(V) < U. Let z* be the image of z in (V) under

(*) Z(U) = F(f7(U)) = (V) .

Set h =z*ow™. We claim f|V =z "'ogohow, i.e. that zo(f|V) =
poz*. It clearly suffices to show that z(f(p)) = #(z*(p)). If this does
not hold, then
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is holomorphic at f(p), and shrinking U, V if necessary, we may
assume ge 7(U). We let g* denote its image under (*) in (V).
But g* = 1/[z* — 2*(p)][z* — 2*(p)] which is not defined at p.

We still need to show that f(@Y) < 0X. Let gqe X. Then &,
is an R-algebra which contains a copy of C if and only if ¢¢oX.
The 7, algebra (f.c%), is isomorphic to

H ﬁ@m?

fip)=q

80 g€ 0X, f(p) = q implies p€dY.

We now check that ¢ is unique. Let U be open in X, ge & (U),
pe f7Y(U). Let (V, w) be a dianalytic chart at » with V< f(U).
Let ¢g* be the image of g in #(V) under (*). Then using the above
arguments, either ¢g*(p) = gf(p) or g*(p) = gf(p). If ¢ is nonconstant,
only one of these can yield an analytic function. If g is constant it
can be expressed as a sum of nonconstant functions. Hence g*, and
thus &, are uniquely determined. The theorem is proved.

By an analytic sheaf of ¥ we mean an <,-module. If & is an
analytic sheaf on ¥ and f:9 — % is a morphism then f* % is the
sheaf associated to the presheaf V — Z(V)®. v F (fV).

ProposiTioN 2. If . s a coherent analytic sheaf on %, then
f*5 1s a coherent analytic sheaf on 9.

Proof. The proof given in [5, p. 47] for Riemann surfaces carries
over to the Klein surface case.

2. The complex double. Let % be a Klein surface, m: % — %
its complex double. Recall that if (U, z,) is a dianalytic atlas on %,
then (U,, Z.) is a dianalytic atlas on %, where U, = U, = U, uU,,
Uunu) =z (U,NoX), and = maps U, and U, each homeomorphically

~

onto U,. The function Z, is defined by

. z(p) peU,
za(p) = Ty 17}
zp) pelU/.
U. is identified with U; where z,02;* is analytic, and with U;’ where
2.0%5" is anti-analytic. This construction yields the Riemann surface
(without boundary) X as a double cover of %, folded along 46.X.
If U is open in X, let U = n(U). We denote the structure

sheaf of X by Z’
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ProroSITION 3. There is a canowical isomorphism
(1) C®. o(U) Z 2(U)
for every open set U < X.

Proof. We may cover U by dianalytic charts (U, z,). It then
suffices to verify (1) for U,, since <(U) is the difference kernel of

M. 2(0.) = Has 0.0 Ts) and € @ is exact.

Let ¢ be the canonical anti-involution of ¥ which commutes with
7, and let £ denote complex conjugation. If we identify ~(U,) with

its image in %’(U‘a) then we see
2(U) = {ge (U |g = rgo} .
But any g€ «(U,) can be written as

g = 3(g + kgo) + 3(g — kgo)

and hence the canonical map

C®x o(U) — (U)

is surjective. This map is easily seen to be injective, completing
the proof.

If & is an analytic sheaf on %, let & = n*. 7.
THEOREM 4. There is a canonical tsomorphism

CQR:. 7 X)=F X .

Proof. We may choose a base for the topology of X consisting
of sets of the form U,, where (U, z,) is a dianalytic atlas on X.
Then sets of the form U, U.(where U,NdX = @) and of the form

U.(where U,N6X = @) form a base B for the topology of X. Since
20 ®.w, 7 (U) = CQ®r .7 (U), it suffices to show that the sequence

0= F®® 0 F & — I V) @wn F (V)

(t1) ~
= 1L oVaw) @, @Vnw) & @vnw).

is exact. When U, and U/ are disjoint then ~(7,) = 5’((/’;) X 5’( Ul
so (1) may be replaced by
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0

!

E®) @-unr F (E) — 11 2U) @y 7 (UL)
200 @,y 7 (Usi)

a,

.

and this last is exact because of Proposition 3 and the fact that &
is a sheaf.

Since the functors &7~ — C @y .~ (X) and &# — T (%) are canoni-
.cally isomorphic, so are their derived functors [3], and we have

THEOREM 5. Let % be an analytic sheaf on the Klein surface
X. Then there is a canonical isomorphism

H'E 7)) = C@uH'(X, .7

for all ¢ = 0.

CoroLLARY. (Cartan Theorem B) Let X be a non-compact Klein
surface, 7 a coherent analytic sheaf on X. Then HY (X, &) =0 for
all g =1

Proof. Use Theorem 5 and Proposition 2 to reduce to the case
-of a non-compact Riemann surface [6, p. 270].
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