
Pacific Journal of
Mathematics

PRIME GENERATORS WITH PARABOLIC LIMITS

JOHN HARRIS AND OLGA HIGGINS

Vol. 37, No. 3 March 1971



PACIFIC JOURNAL OF MATHEMATICS
Vol. 37, No. 3, 1971

PRIME GENERATORS WITH PARABOLIC LIMITS

JOHN HARRIS AND OLGA HIGGINS

The prime generating properties of the formula

π _ AX2 + ABXY + CY2 , x r V N _ i
r — , (A, jr — i

are developed by way of three theorems. Theorem I is a
prime test for F, Theorem II will factor a composite F, and
Theorem III establishes parabolic limits; within these limits
F is always prime.

In the 18th century Leonhard Euler and A. M. Legendre found
several "prime generating" polynomials. Euler's famous formula
X2 + X + 41 takes prime values for every integral value of x from
0 to 39, and Legendre's formula 2x2 + 29 does almost as well, taking
prime values for every integral value of x from 0 to 28. These and
many other expressions that have been found since have coefficients
of the form \A, AB, C], with B = 0 or 1 and C a prime.

After numerous experiments with two variables we have chosen

F =
hi

^ E=(A, Y), (X, Y) = 1

.as our basic "prime generating" formula. The coefficients A, B and
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C are to be chosen from Table I, and then F is a function of the
two variables X and Y. That this can be a very effective prime
generator is shown by Fig. 1, where all of the dots represent primes;
see Example 3. Figure 1 shows the typical dot pattern which is due
to the requirement (X, Y) = 1. F is defined differently in the text
by the definitions of §2, but the mathematical result is the same as
shown in the proof of Theorem III.

The three theorems presented in this paper answer some of the
more interesting questions about our formula. Theorem I is a prime
test that determines whether F is prime or composite. Theoretically
it will test numbers of any size, see Example 1. Theorem II will
factor a number found composite by Theorem I. Theorem III gives
the prime generating limits of our formula; the parabolic limits
inside of which there are no composite values of F. Fig. 1 shows
how these limits are established by intersecting parabolas. The
nature of F outside the limits is not shown in Fig. 1; there are
primes, which could be shown by dots, and composites, which could
be represented by some other symbol.

• x

FIGURE 2

Example 4 and Fig. 2 present a function that is perhaps more in
the spirit of Euler's original discovery; the function has prime values
within the limits for consecutive integral values of both variables.
In this case the limits are hyperbolas.
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2* Definitions and two theorems* Let A, B and C be any
integers subject to the following conditions: [See Table I.]

TABLE I

A list of coefficients for use with all three theorems:
Values of A and C when B = 0:
C = 2: A = 1,3,5,11,15,21,29,35,39,51,65,95,105,165,231.
C = 3: A = 2,10,14,26,34,70,110,154.
C = 5: A = 2,6,14,26,38,42,66.
C = 7: A = 6,10,30,66.
C = l l :
C = 13:
C= 17:
C = 19:
C = 29:

A = 2,30,42.
A = 6,10.
A = 6.
A = 10.
A = 2.

Values of A and C when B = 1:
C = 2:
C = 3:
C = 5:
C = 7:
C = 11:
C = 13:
C = 17:
C = 19:
C = 23:
C = 29:
C = 31:
C = 37:
C = 41:
C = 43:
C = 47:
C - 5 3 :
C = 59:
C = 61:
C = 67:
C = 71:
C = 73:
C = 97:
C = 101:
C = 109:
C = 139:
C = 167:
C = 229:
C = 251:
C = 277:

A = 1,3,5.
A = 1,2,5,7.
A = 1,3,6,7,13,14,17.
A = 2,5,6,11,15,17,22,23.
A = 1,3,6,10,13,15,21,30,31,34,38,39,41.
A = 5,14,15,30,33,38,42,47.
A = 1,6,7,15,22,42,46,55,57,61,62,65.
A = 2,30,35,42,65,66,69,70.
A = 3,70,78,85,87,89.
A = 102,105,110,111.
A = 6,105,110,118,119.
A = 138,143,145.
A = 1,154,159,161.
A = 165.
A = 182,185.
A = 195,205,209.
A = 210,230,231.
A = 231,238.
A = 255,265.
A = 273.
A = 285,287.
A = 385.
A = 390,399.
A = 429.
A = 546.
A = 663,665.
A = 910.
A = 1001.
A = 1105.

Cl. A > 0, B = 0 or B = 1, C is a prime.
C2. AC has no square factors > 1.
C3. 4C - AB2 > 2.
C4. Every positive integral binary quadratic form with the discrimi-

nant -D [see Dl below] must be equivalent to one of the forms
[Ale, AB, eC], where e is any positive divisor of A.
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D E F I N I T I O N S .

D l . L e t D = 4AC - A2B2; t h e n D > 2 by C l and C3.
D2. Let E be a positive divisor of A .
D 3 . L e t X and y be any two integers such t h a t (XA/E, Ey) — 1

and y Φ 0.
D4. L e t F = (A/E)X2 + ABXy + #Cτ/2.
D5. Let Y = Ey, so Y Φ 0; and let Z = 2AX + A£Y.
D6. Let J be any integer and let N = - DP + 227 + Y2.

THEOREM I. F is a prime if and only if N is never a square
when I Φ 0; this can be determined in a finite number of steps.

THEOREM II. When N = n2 with I Φ 0, a proper divisor M > 1
of F can be found as follows: Let L = AI, H = (n — BL — Y)/2,
G = (H, L), R = H/G, S = L/G, Q = (A, S), and then: M - (AR2 +
ABRS + CS2)/Q.

3. Outline of the proofs* First we show that F > 1, so ί7 is
either prime or composite; next, when F is composite, nonzero
integers W and K are found such that N is a square when / — K W;
finally, we prove Theorem II, so if N is a square with I Φ 0 then JF
must be composite. That only a finite number of values of / can
make N positive or zero [and so possibly a square] follows from Dl
and D6. When these facts are combined they prove Theorem I.

4. Preliminary Theory. [F > 1, (F, A) = 1, and the form of
a divisor of F.]

The proof that F > 1: From D3, D4 and D5,

(1) EF = AX2 + ABXY + CY2 , (X, Γ) = 1

so 4AEF = (2AX+ ABY)2 + (4AC ~ A2B2)Y\ which reduces to

AF = (A/E)(2X + BY)2 + (4C - AB2)(Y2/E) .

A/E and Γ2/I? are positive integers and AC — AB2 > 2 by C3, so
F > 0, and if F - 1 then 4C - AB2 = 3 or 4. Since C > 1 by Cl we
have S = 1, F 2/# - 1, F 2 - 1, # = 1, 4 C - A - 4 - A(2X± I)2 - 3 or 4;
then A = 1 and AC — A = 3 or 4, which is impossible. Hence F > 1.

Tλe proo/ ίAαί (F, A) = 1: Let a prime p divide both F and A.
Then p\ Y by C2 and (1), which implies X ^ 0 and p | X b y (X, Γ) = 1.
(A/E, y) = 1 from D3 so (A, Γ) = # and p | #; but this leads to the
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impossible conclusion that p2 divides every term of (1) except AX2

[see C2]. Hence (F, A) = 1.

DEFINITION OF P. Let P be any prime divisor of F.

Then since P\EF which is properly represented by [A, AB, C] as
shown by (1), a form with the discriminant —D, it follows by
Lagrange's well known theorem that P can also be represented by a
form with the discriminant —D. Then the fact that equivalent
forms represent the same numbers, and C4, combine to show that P
can be represented by [A/J, AB, JC], where J is a positive divisor of
A. Integers u and W can therefore be found such that

(2) P= (A/J)u2 + ABuW + JCW2 . [Compare to D4.]

Then we also have:

(3) P = (A/J)(- u - BJW)2 + AB(- u - BJW) W + JCW2 ,

since by eliminating P between (2) and (3) we arrive at an identity.
Also an identity: {AX2 + ABXY + CY2)JW2 - (A/Ju2 + ABuW +
JCW2) Y2 = (A/J)(JWX - uY)(JWX + uY + BJWY), so from (1) and
(2):

( 4) EFJW2 - PY2 = (A/J)(JWX - uY)(JWX + uY + BJWY) ,

where ^4// is integral. It follows from (ί7, A) = 1 that (P, A) = 1,
so from (4): P divides either JWX - uY or JWX + π Γ + BJWY,
or both. If P divides JT^X - M Γ , let £/ = u; if not, let U = - u -
BJW. P divides JWX - UY in both cases, so let

. . . π JWX- UY

then ίΓ is always integral. By (2) or (3),

( 6 ) P = (A/J) ί/2 + ABUW +

5» The proof that a nonzero value of I, I = KW, makes N
a square when F is composite* Let F be composite. Then X Φ 0,
since if X = 0 we have Y2 = 1, y* = E = 1, F = C. Also, T7 ̂  0
by (6), (P, A) = 1, and P ^ 1. [P ^ 1 because it is prime.] Finally,
(Ϊ7, JTF) = 1, because if U and J have a common prime divisor it
must divide both P [by (6)] and A, contradicting (P, A) — 1; while
if a prime divides both U and W, its square divides the prime P by
(6).

Now suppose that K — 0; then JWX = UY by (5), where
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JWXY Φ 0; hence U Φ 0. Then (X, Y) = 1, (17, JW) = 1 and
JWX = UY shows that X\ U and U\X, so X = U and Γ = JTΓ or
X = - U and F = - JTF. In both cases, .Etf7 = JP by (1) and (6),
and since (FP, EJ) = 1 [E and / divide A], we conclude that F = Pt

a prime. Hence KW Φ 0 when F is composite.

Let / = KW with jp7 composite, so / Φ 0; eliminating P between
(5) and (β) and multiplying by (4AK2)/J, we get:

(2AKU/J)2 + 2(2AKU/J)ABI + AACP = AAXI - AAKUY/J ,

which reduces to

( 7 ) N= (2AKU/J + AS/ + Y)2 ,

by Dl, D5 and Dβ. Since J\A, N is a square.

6. The proof of Theorem I and Theorem IL From N — n2

and D6:

(8) n2 = - DP + 2ZI + F 2 .

Definitions.
D7. Z, = A/.
D8. H= (n- BL- Y)/2, h = (- n - BL - Y)/2.
D9. G = (ίί, L), g = (fe, L).
D10. R = fl/G, r = h/g.
Dll. S = L/G, s = L/g.
D12. Q = (A,S), g = (A,s).
D13. ΛΓ - (Ai22 + Aΰi2S + CS2)/Q, m = (Ar2 + A5rs + Cs2)/g.

Lei ^ be integral with N = n2 and with IΦ 0. Then L Φ 0,
S =̂  0 and s Φ 0. 2ίί and 2fe are integral by D8, they have an even
product (2H)(2h) = 4L(CI - X) by D8, D7; and (8), Dl and D5.
Also, 2H — 2h = 2n by D8, so 2Ή. and 2h have an even difference
and are both odd or both even; with an even product, they must be
even. Hence H and h are integral. Hh = L(CI — X)., so L divides
Hh. From (1), Dl and D5,

(9 ) AAEF = Z2 + DY2 ,

and there are similar formulas for M and m:

(10) AAQM = (2AR + ABS)2 + DS2 , 4Agm = (2Ar + ABs)2 + Ds2 .

2R + BS = (2H + BL)/G = (n - Y)/G by D10, Dll and D8, and
similarly, 2r + Bs = (— n — Y)/g. S = AI/G and s = Al/g, so from
(10), 4AQMG2 = A2([w - Γ]2 + ZλP) and 4Aqmg2 = A2([- w - Yf +
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DP). Hence, lQQqMmGψ = A2(AZ2P + ADPY2) = 4A*P(4AEF) by (8)
and (9), so

(11) (-^Y QqMm = ABF .

L\Hh; G = (if, L); and g = (/&, L). Let p be a prime divisor of L,
and let the symbol "p(a)" represent the highest power of p which
divides α. If p(H) ^ p(L) or p(h) ^ p(L), then p(G) - p(L) or
2%) = 2>(£) and p(G#) ̂  £>(£). In the remaining case, both p(H) and
p(h) are less than p(L), so p(G) = p(J?) and p(g) = p(Λ), and then
#>((?#) = p(iίΛ) ^ p(L). In all cases the highest power of P which
divides L also divides Gg, and so L divides Gg.

The proof that M is a proper divisor of F. In view of (11)
and the last result, we need only show that M > 1, m > 1, and
(Mm, AE) = 1. From D9, D10 and Dl l , we have (i2, S) = 1. Compare
this to (X, Y) = 1; QM = Ai22 + A £ # S + CS2 to (1); and Q = (A, S)
to E = (A, F ) . Also note S ^ 0 and F ^ 0; clearly the substitution
of i?, S and Q for X, Y and ,£7 converts F into M. In fact, ikf is
one of the numbers F, but not the one of which M is a divisor. It
follows that M > 1, (ikf, A) = 1, and by similar reasoning, m > 1 and
(m, A) = 1. Since E\A, we have (Mm, Ai?) = 1, and the proof that
M is a proper divisor of F is complete. This proves Theorem II.
The proof of Theorem / is now also complete by the reasoning given
in "outline of the proofs".

The number of values of / for which N needs to be tested is
approximately (4VΆEF)/Dj SO D/\/AE should be large for an efficient
test. Of all the values given in Table I, A = 210, B = 1, C = 59,
E = 1 gives the largest, with Djx/ΆE = 376.

EXAMPLE 1. Let A - B - 1, C = 41. Then E = 1, Y = y, and
.F = X2 + 1 7 + 41Y2. Let X - 1000 and Y = 1. Then

F = 1, 001, 041, and N = - 163/2 + 4002/ + 1 .

N is negative for negative / and for I > 24, so we test the 24 values
of JV given by ί ^ 1,2,3, --.,24. We get N= 3840, 7353, 10540,
etc., and find no squares, so F is a prime. [See Theorem /.]

EXAMPLE 2. Let A = 6, B = 1, C = 31; these values can be
found in Table I. Let E = 2, X - 423, 7/ = 19, then (XA/.S, .Efy) = 1
as required by D3, and F = 3(423)2 + 6(423)(19) + 62(19)2 = 607391;
and F is composite, because for I — 3 we find JV = (164)2. By Theorem
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II we now have: n = 164, L = 18, H = 54, G = 18, 72 = 3, S = 1,
Q = 1, and i[f = 103. The factors of F are 103 and 5897.

7* Theorem III and its proof*

THEOREM III. Define A, J3, C α^d D as before, let X and Y be
any two relatively prime integers such that the following limits are
satisfied:

(12) D - Y2 > \4AX + 2ABY\

and let

+ A B X Y + CY*F
(A, Y)

Then F is a prime when Y Φ 0.

Proof. Let E = (A, Y) and let y = Y/E, then from (A/E, E) = 1,
(A/E, y) = 1, and (X, Ey) = 1, we find (XA/E, Ey) = 1 as in D3.
Also, F = (A/E)X2 + ABXy + ECy2, and the preliminary requirements
of Theorem I are satisfied. By D5 and (12), D - Y2 <2\Z\. Then by
D6, N is negative for 7 = 1 and for I = —1, and since N is positive
for 7 = 0 and is of the second degree in 7, it follows that N is negative
for all integral values of I except 7—0, for otherwise the equation
N = 0 would have more than two roots for real values of L Hence
F is prime by Theorem I.

EXAMPLE 3. Let A = 6, B = 1, and C = 31. Then from Theorem
III: F = (6X2 + 6XY+ 31Γ2)/(6, Y) is a prime when (X, Y) = 1 and
Y Φ 0 and:

(13) >X>
24 24

[(13) follows in a simple way from (12).] It can be seen from (13)
that the limits are parabolas. There are 309 different values of F
within the limits (13); see Fig. 1, where each prime is represented
by four symmetrically placed points (X, Y), corresponding to the four
representations of a prime F by [6/E, 6, 31 E]. [F = 59 is an excep-
tion, since 59 divides D.] Every lattice point within the limits (13)
and with (X, Y) = 1 is marked, and the parabolas found by placing
equals signs in (13) are shown in the figure.

EXAMPLE 4. Replace X by XY + 1 in all the formulas of
Example 3. The result can be seen in Fig. 2; the limits have become
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hyperbolas, and every lattice point with Y Φ 0 and within the limits
corresponds to a prime. Some of the primes of Fig. 1 are lost by
the transformation, but 150 distinct primes remain.
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